我有一个相当大的数据框(df),每个单元格中都包含数组和 NaN,前 3 行如下所示:
df:
A B C
X [4, 8, 1, 1, 9] NaN [8, 2, 8, 4, 9]
Y [4, 3, 4, 1, 5] [1, 2, 6, 2, 7] [7, 1, 1, 7, 8]
Z NaN [9, 3, 8, 7, 7] [2, 6, 3, 1, 9]
我已经知道(感谢 piRSquared)如何在每列的行上取元素平均值,以便我得到这个:
element_wise_mean:
A [4.0, 5.5, 2.5, 1.0, 7.0]
B [5.0, 2.5, 7.0, 4.5, 7.0]
C [5.66666666667, 3.0, 4.0, 4.0, 8.66666666667]
现在我想知道如何获得各自的标准偏差,知道吗?另外,我还不明白 groupby() 在做什么,有人可以更详细地解释它的功能吗?
df
np.random.seed([3,14159])
df = pd.DataFrame(
np.random.randint(10, size=(3, 3, 5)).tolist(),
list('XYZ'), list('ABC')
).applymap(np.array)
df.loc['X', 'B'] = np.nan
df.loc['Z', 'A'] = np.nan
element_wise_mean
df2 = df.stack().groupby(level=1)
element_wise_mean = df2.apply(np.mean, axis=0)
element_wise_sd
element_wise_sd = df2.apply(np.std, axis=0)
TypeError: setting an array element with a sequence.