如果要计算矩阵的完整 SVD,可以使用包bigstatsr按块执行计算。AFBM
代表 Filebacked Big Matrix,是一个类似于package bigmemorybig.matrix
的 filebacked对象的对象。
library(bigstatsr)
options(bigstatsr.block.sizeGB = 0.5)
# Initialize FBM with random numbers
a <- FBM(1e6, 1e3)
big_apply(a, a.FUN = function(X, ind) {
X[, ind] <- rnorm(nrow(X) * length(ind))
NULL
}, a.combine = 'c')
# Compute t(a) * a
K <- big_crossprodSelf(a, big_scale(center = FALSE, scale = FALSE))
# Get v and d where a = u * d * t(v) the SVD of a
eig <- eigen(K[])
v <- eig$vectors
d <- sqrt(eig$values)
# Get u if you need it. It will be of the same size of u
# so that I store it as a FBM.
u <- FBM(nrow(a), ncol(a))
big_apply(u, a.FUN = function(X, ind, a, v, d) {
X[ind, ] <- sweep(a[ind, ] %*% v, 2, d, "/")
NULL
}, a.combine = 'c', block.size = 50e3, ind = rows_along(u),
a = a, v = v, d = d)
# Verification
ind <- sample(nrow(a), 1000)
all.equal(a[ind, ], tcrossprod(sweep(u[ind, ], 2, d, "*"), v))
这在我的电脑上大约需要 10 分钟。