5

我第一次使用线程库来加快我的 SARIMAX 模型的训练时间。但是代码一直失败并出现以下错误

Bad direction in the line search; refresh the lbfgs memory and restart the iteration.
This problem is unconstrained.
This problem is unconstrained.
This problem is unconstrained.

以下是我的代码:

import numpy as np
import pandas as pd
from statsmodels.tsa.arima_model import ARIMA
import statsmodels.tsa.api as smt
from threading import Thread

def process_id(ndata):
   train = ndata[0:-7]
   test = ndata[len(train):]
   try:
       model = smt.SARIMAX(train.asfreq(freq='1d'), exog=None, order=(0, 1, 1), seasonal_order=(0, 1, 1, 7)).fit()
       pred = model.get_forecast(len(test))
       fcst = pred.predicted_mean
       fcst.index = test.index
       mapelist = []
       for i in range(len(fcst)):
            mapelist.insert(i, (np.absolute(test[i] - fcst[i])) / test[i])
       mape = np.mean(mapelist) * 100
       print(mape)
    except:
       mape = 0
       pass
return mape

def process_range(ndata, store=None):
   if store is None:
      store = {}
   for id in ndata:
      store[id] = process_id(ndata[id])
   return store


def threaded_process_range(nthreads,ndata):
    store = {}
    threads = []
    # create the threads
    k = 0
    tk = ndata.columns
    for i in range(nthreads):
        dk  = tk[k:len(tk)/nthreads+k]
        k = k+len(tk)/nthreads
        t = Thread(target=process_range, args=(ndata[dk],store))
        threads.append(t)
    [ t.start() for t in threads ]
    [ t.join() for t in threads ]
    return store

outdata = threaded_process_range(4,ndata)

我想提几点:

  • 数据是数据框中的每日股票时间序列
  • 线程适用于 ARIMA 模型
  • SARIMAX 模型在 for 循环中完成时有效

任何见解将不胜感激,谢谢!

4

1 回答 1

7

我在使用 lbfgs 时遇到了同样的错误,我不确定为什么 lbfgs 无法进行梯度评估,但我尝试更改优化器。你也可以试试这个,在这些优化器中进行选择

'newton' 代表 Newton-Raphson,'nm' 代表 Nelder-Mead

Broyden-Fletcher-Goldfarb-Shanno (BFGS) 的“bfgs”

'lbfgs' 用于具有可选框约束的有限内存 BFGS

'powell' 表示修改后的 Powell 方法

'cg' 共轭梯度

'ncg' 表示牛顿共轭梯度

用于全球盆地跳跃求解器的“盆地跳跃”

在你的代码中改变它

model = smt.SARIMAX(train.asfreq(freq='1d'), exog=None, order=(0, 1, 1), seasonal_order=(0, 1, 1, 7)).fit(method='cg')

这是一个老问题,但我仍然在回答,以防将来有人遇到同样的问题。

于 2019-04-30T10:25:08.307 回答