.......E <-end
........
........
........
........
........
........
S....... <-start
不幸的是,您不能使用“任何标准路径查找算法”,因为您的路径可能不是最短路径。您必须专门使用考虑所有路径(例如深度优先或广度优先)的简单搜索。
但是,由于您不关心如何获得一个图块,您可以使用一种称为动态编程的技术。对于每个位置 (i,j),在n次移动中到达那里的方式的数量(我们称之为方式i,j (n))是:
方式i,j (n) = 方式i-1,j (n-1) + 方式i+1,j (n-1) + 方式i,j-1 (n-1) + 方式i,j+1 (n-1) + 方式i+1,j+1 (n-1) + 方式i-1,j+1 (n-1) + 方式i+1,j-1 (n-1) + 方式i -1,j-1 (n-1)
也就是说,国王可以在 1 步内从任何相邻的方格移动:
方式i,j (n) = 和邻居 (i,j) (方式邻居(n-1))
因此你会这样做,例如在 python 中:
SIZE = 8
cache = {}
def ways(pos, n):
r,c = pos # row,column
if not (0<=r<SIZE and 0<=c<SIZE):
# off edge of board: no ways to get here
return 0
elif n==0:
# starting position: only one way to get here
return 1 if (r,c)==(0,0) else 0
else:
args = (pos,n)
if not args in cache:
cache[args] = ways((r-1,c), n-1) + ways((r+1,c), n-1) + ways((r,c-1), n-1) + ways((r,c+1), n-1) + ways((r-1,c-1), n-1) + ways((r+1,c-1), n-1) + ways((r+1,c-1), n-1) + ways((r+1,c+1), n-1)
return cache[args]
演示:
>>> ways((7,7), 15)
1074445298
上述技术称为记忆化,比动态编程更容易编写,因为你不需要真正考虑你做事的顺序。您可以看到缓存随着我们执行一系列越来越大的查询而增长:
>>> cache
{}
>>> ways((1,0), 1)
1
>>> cache
{((1, 0), 1): 1}
>>> ways((1,1), 2)
2
>>> cache
{((0, 1), 1): 1, ((1, 2), 1): 0, ((1, 0), 1): 1, ((0, 0), 1): 0, ((2, 0), 1): 0, ((2, 1), 1): 0, ((1, 1), 2): 2, ((2, 2), 1): 0}
>>> ways((2,1), 3)
5
>>> cache
{((1, 2), 1): 0, ((2, 3), 1): 0, ((2, 0), 2): 1, ((1, 1), 1): 1, ((3, 1), 1): 0, ((4, 0), 1): 0, ((1, 0), 1): 1, ((3, 0), 1): 0, ((0, 0), 1): 0, ((2, 0), 1): 0, ((2, 1), 1): 0, ((4, 1), 1): 0, ((2, 2), 2): 1, ((3, 3), 1): 0, ((0, 1), 1): 1, ((3, 0), 2): 0, ((3, 2), 2): 0, ((3, 2), 1): 0, ((1, 0), 2): 1, ((4, 2), 1): 0, ((4, 3), 1): 0, ((3, 1), 2): 0, ((1, 1), 2): 2, ((2, 2), 1): 0, ((2, 1), 3): 5}
(在python中,也可以使用a @cached
or@memoized
装饰器来避免必须在最后一个else:
块中编写整个代码。其他语言有其他方式可以自动执行memoization。)
以上是自上而下的方法。它有时会产生非常大的堆栈(您的堆栈会随着 增长n
)。如果你想超级高效以避免不必要的工作,你可以做一个自下而上的方法,你模拟国王可能的所有位置,1步,2步,3步,......:
SIZE = 8
def ways(n):
grid = [[0 for row in range(8)] for col in range(8)]
grid[0][0] = 1
def inGrid(r,c):
return all(0<=coord<SIZE for coord in (r,c))
def adjacentSum(pos, grid):
r,c = pos
total = 0
for neighbor in [(1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1)]:
delta_r,delta_c = neighbor
(r2,c2) = (r+delta_r,c+delta_c)
if inGrid(r2,c2):
total += grid[r2][c2]
return total
for _ in range(n):
grid = [[adjacentSum((r,c), grid) for r in range(8)] for c in range(8)]
# careful: grid must be replaced atomically, not element-by-element
from pprint import pprint
pprint(grid)
return grid
演示:
>>> ways(0)
[[1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
>>> ways(1)
[[0, 1, 0, 0, 0, 0, 0, 0],
[1, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
>>> ways(2)
[[3, 2, 2, 0, 0, 0, 0, 0],
[2, 2, 2, 0, 0, 0, 0, 0],
[2, 2, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
>>> ways(3)
[[6, 11, 6, 4, 0, 0, 0, 0],
[11, 16, 9, 5, 0, 0, 0, 0],
[6, 9, 6, 3, 0, 0, 0, 0],
[4, 5, 3, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
>>> ways(4)
[[38, 48, 45, 20, 9, 0, 0, 0],
[48, 64, 60, 28, 12, 0, 0, 0],
[45, 60, 51, 24, 9, 0, 0, 0],
[20, 28, 24, 12, 4, 0, 0, 0],
[9, 12, 9, 4, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]