2

我正在使用 R 包 randomForest 创建一个可分为三组的模型。

 model = randomForest(formula = condition ~ ., data = train, ntree = 2000,      
                       mtry = bestm, importance = TRUE, proximity = TRUE) 

           Type of random forest: classification
                 Number of trees: 2000
                 No. of variables tried at each split: 3

           OOB estimate of  error rate: 5.71%

           Confusion matrix:
           lethal mock resistant class.error
 lethal        20    1         0  0.04761905
 mock           1   37         0  0.02631579
 resistant      2    0         9  0.18181818

我试过几个库。例如,使用 ROCR,您不能进行三个分类,只能进行两个分类。看哪:

pred=prediction(predictions,train$condition)

Error in prediction(predictions, train$condition) : 
  Number of classes is not equal to 2.
  ROCR currently supports only evaluation of binary classification 
  tasks.

来自 model$votes 的数据如下所示:

         lethal        mock   resistant
 3   0.04514364 0.952120383 0.002735978
 89  0.32394366 0.147887324 0.528169014
 16  0.02564103 0.973009447 0.001349528
 110 0.55614973 0.433155080 0.010695187
 59  0.06685633 0.903271693 0.029871977
 43  0.13424658 0.865753425 0.000000000
 41  0.82987552 0.033195021 0.136929461
 86  0.32705249 0.468371467 0.204576043
 87  0.37704918 0.341530055 0.281420765
 ........

我可以使用 pROC 包以这种方式获得一些非常丑陋的 ROC 图:

predictions <- as.numeric(predict(model, test, type = 'response'))
roc.multi <- multiclass.roc(test$condition, predictions, 
                            percent=TRUE)
rs <- roc.multi[['rocs']]
plot.roc(rs[[2]])
sapply(2:length(rs),function(i) lines.roc(rs[[i]],col=i))

这些图如下所示: 图 1:丑陋的 ROC 曲线

但是没有办法平滑这些线条,因为它们不是曲线,因为它们每个有 4 个左右的点。

我需要一种方法来为这个模型绘制一条漂亮的平滑 ROC 曲线,但我似乎找不到。有谁知道一个好的方法?首先十分感谢!

4

1 回答 1

5

我在这里看到两个问题1) ROC 曲线适用于二元分类器,因此您应该将性能评估转换为一系列二元问题。我在下面展示了如何做到这一点。2)当你预测你的测试集时,你应该让每个观察结果属于你的每个类(而不仅仅是预测的类)的概率。这将允许您绘制漂亮的 ROC 曲线。这是代码

#load libraries
library(randomForest)
library(pROC)

# generate some random data
set.seed(1111)
train <- data.frame(condition = sample(c("mock", "lethal", "resist"), replace = T, size = 1000))
train$feat01 <- sapply(train$condition, (function(i){ if (i == "mock") { rnorm(n = 1, mean = 0)} else if (i == "lethal") { rnorm(n = 1, mean = 1.5)} else { rnorm(n = 1, mean = -1.5)} }))
train$feat02 <- sapply(train$condition, (function(i){ if (i == "mock") { rnorm(n = 1, mean = 0)} else if (i == "lethal") { rnorm(n = 1, mean = 1.5)} else { rnorm(n = 1, mean = -1.5)} }))
train$feat03 <- sapply(train$condition, (function(i){ if (i == "mock") { rnorm(n = 1, mean = 0)} else if (i == "lethal") { rnorm(n = 1, mean = 1.5)} else { rnorm(n = 1, mean = -1.5)} }))
head(train)

test <- data.frame(condition = sample(c("mock", "lethal", "resist"), replace = T, size = 1000))
test$feat01 <- sapply(test$condition, (function(i){ if (i == "mock") { rnorm(n = 1, mean = 0)} else if (i == "lethal") { rnorm(n = 1, mean = 1.5)} else { rnorm(n = 1, mean = -1.5)} }))
test$feat02 <- sapply(test$condition, (function(i){ if (i == "mock") { rnorm(n = 1, mean = 0)} else if (i == "lethal") { rnorm(n = 1, mean = 1.5)} else { rnorm(n = 1, mean = -1.5)} }))
test$feat03 <- sapply(test$condition, (function(i){ if (i == "mock") { rnorm(n = 1, mean = 0)} else if (i == "lethal") { rnorm(n = 1, mean = 1.5)} else { rnorm(n = 1, mean = -1.5)} }))
head(test)

现在我们有了一些数据,让我们像你一样训练一个随机森林模型

# model
model <- randomForest(formula = condition ~ ., data = train, ntree = 10, maxnodes= 100, norm.votes = F) 

接下来,该模型用于预测测试数据。但是,你应该在type="prob"这里问。

# predict test set, get probs instead of response
predictions <- as.data.frame(predict(model, test, type = "prob"))

既然你有概率,就用它们来获得最有可能的班级。

# predict class and then attach test class
predictions$predict <- names(predictions)[1:3][apply(predictions[,1:3], 1, which.max)]
predictions$observed <- test$condition
head(predictions)
  lethal mock resist predict observed
1    0.0  0.0    1.0  resist   resist
2    0.0  0.6    0.4    mock     mock
3    1.0  0.0    0.0  lethal     mock
4    0.0  0.0    1.0  resist   resist
5    0.0  1.0    0.0    mock     mock
6    0.7  0.3    0.0  lethal     mock

现在,让我们看看如何绘制 ROC 曲线。对于每个类,将多类问题转换为二元问题。此外,调用roc()指定 2 个参数的函数:i)观察到的类和ii)类概率(而不是预测类)。

# 1 ROC curve, mock vs non mock
roc.mock <- roc(ifelse(predictions$observed=="mock", "mock", "non-mock"), as.numeric(predictions$mock))
plot(roc.mock, col = "gray60")

# others
roc.lethal <- roc(ifelse(predictions$observed=="lethal", "lethal", "non-lethal"), as.numeric(predictions$mock))
roc.resist <- roc(ifelse(predictions$observed=="resist", "resist", "non-resist"), as.numeric(predictions$mock))
lines(roc.lethal, col = "blue")
lines(roc.resist, col = "red")

完毕。这就是结果。当然,测试集中的观察值越多,曲线就越平滑。

在此处输入图像描述

于 2017-09-08T23:00:13.483 回答