0

我正在使用 SKLearn 的 LinearSVC (LibLinear) 执行简单的分类。

我无法直接重现预测值并获得与“LinearSVC.predict”相同的准确性。

我究竟做错了什么?以下代码是独立的,突出了我的问题。

import scipy as sc
import numpy as np
from sklearn.svm import LinearSVC #liblinear
N=6000
m=500

D = sc.sparse.random(N,m, random_state = 1)
D.data *= 2
D.data -= 1
X = sc.sparse.csr_matrix(D)
y = (X.sum(axis = 1) > .0)*2-1.0 

x_train = X[:5000,:]
y_train = y[:5000,:]
x_test  = X[5000:,:]
y_test  = y[5000:,:]

clf = LinearSVC(C=.1, fit_intercept = False, loss= 'hinge')
clf.fit(x_train,np.array(y_train))

print "Direct prediction accuracy:\t",100-100*np.mean((np.sign(x_test*clf.coef_.T)!=y_test)+0.0) ,"%"
print "CLF prediction accuracy:\t",  100*clf.score(x_test,y_test),"%"

输出:

Direct prediction accuracy:     90.8 %
CLF prediction accuracy:        91.3 %

谢谢你的帮助!

4

1 回答 1

1

不同之处在于您如何对待零,当使用np.sign结果中的零时,这些零未被分类为任何有效的类(1 或 -1,因为您有一个二元分类器);另一方面, Classifier.predict 严格输出两个类np.sign(x_test*clf.coef_.T)您的预测方法从to的微小变化将提供与内置预测(np.where(x_test * clf.coef_.T > 0, 1, -1)方法完全相同的准确性:

​
print "Direct prediction accuracy:\t", 100-100*np.mean((np.where(x_test * clf.coef_.T > 0, 1, -1) != y_test)+0.0) ,"%"
print "CLF prediction accuracy:\t",  100*clf.score(x_test, y_test),"%"

# Direct prediction accuracy:   92.7 %
# CLF prediction accuracy:  92.7 %
于 2017-08-24T03:02:03.287 回答