我需要按逻辑列(或更准确地说,按其否定)过滤表,但列的名称可能会有所不同。当我事先知道他们的名字时,这很容易:
tb = tibble(
id = 1:4,
col1 = c(TRUE, TRUE, FALSE, FALSE),
col2 = c(TRUE, FALSE, TRUE, FALSE)
)
tb
## # A tibble: 4 x 3
## id col1 col2
## <int> <lgl> <lgl>
## 1 1 TRUE TRUE
## 2 2 TRUE FALSE
## 3 3 FALSE TRUE
## 4 4 FALSE FALSE
colname = quo(col1)
tb %>%
filter(!!colname) # rows where col1 is true
## # A tibble: 2 x 3
## id col1 col2
## <int> <lgl> <lgl>
## 1 1 TRUE TRUE
## 2 2 TRUE FALSE
tb %>%
filter(!(!!colname)) # rows where col1 is false
## # A tibble: 2 x 3
## id col1 col2
## <int> <lgl> <lgl>
## 1 3 FALSE TRUE
## 2 4 FALSE FALSE
colname = quo(col2)
tb %>%
filter(!!colname) # rows where col2 is true
## # A tibble: 2 x 3
## id col1 col2
## <int> <lgl> <lgl>
## 1 1 TRUE TRUE
## 2 3 FALSE TRUE
tb %>%
filter(!(!!colname)) # rows where col2 is false
## # A tibble: 2 x 3
## id col1 col2
## <int> <lgl> <lgl>
## 1 2 TRUE FALSE
## 2 4 FALSE FALSE
但是,当列名存储在字符串中时,我无法弄清楚如何做同样的事情。例如:
colname = "col1"
tb %>%
filter(!!colname)
## Error in filter_impl(.data, quo): Argument 2 filter condition does not evaluate to a logical vector
colname = quo("col1")
tb %>%
filter(!!colname)
## Error in filter_impl(.data, quo): Argument 2 filter condition does not evaluate to a logical vector
colname = quo(parse(text = "col1"))
tb %>%
filter(!!colname)
## Error in filter_impl(.data, quo): Argument 2 filter condition does not evaluate to a logical vector
那么问题来了,我该怎么做呢?
编辑:这不是这个问题的重复,因为从那时起,使用 dplyr 进行非标准评估的首选方式发生了变化。所有以 _ 结尾的函数现在都已弃用,现在推荐使用 tidy 评估框架。