The basic idea is, that I load a trained model (DCGAN) and make a anomaly detection with it on images. For the anomaly detection I have to do some iterations on the test phase to evaluate it, if it is a anomaly or not.
For that I have two Loss-Functions in the test setup, which should be calculating a backpropagation to the generator input and update the latent vector. But it only should update the latent vector, not the weights on the graph.
Is this possible?
Probably, if I use only a pytorch-variable of my latent vector and set the variable output of the generator to
"requires_grad=False"
Like in the docs --> Pytorch