目前我正在尝试为这个Opencore Verilog 模块(1-wire master)编写一个 VHDL 包装器,以便我可以从这个温度传感器(DS18B20)发送/接收。
但是我很难理解它的用法。即读/写使能与 1-wire 主模块的控制/状态寄存器中的 cyc 位。
到目前为止,我的代码将 cyc 位设置为 1,同时将读/写启用设置为 1,但不会在每个位期间循环它们。这是正确的还是我误解了?我是 VHDL 的新手/阅读数据表,所以我为此苦苦挣扎了几天。任何帮助,将不胜感激。
我发现这个网站一直用作参考,但它不涉及我正在使用的 Verilog 模块。
我也在寻找关于我的代码风格的提示,以及一般的 VHDL 提示。
我当前的代码:
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL; --may need to remove if signed not used
ENTITY one_wire_temp_probe_control IS
GENERIC (
one_us_divider_g : integer range 0 to 50 := 50 -- clock divider for one micro second
);
PORT (
i_clk_50mhz : IN STD_LOGIC;
i_read_enable : IN std_logic;
io_temp_probe : INOUT STD_LOGIC; --how do i register an inout
o_temperature : OUT signed(6 DOWNTO 0);
o_temp_ready : OUT std_logic
);
END one_wire_temp_probe_control;
ARCHITECTURE rtl of one_wire_temp_probe_control IS
----temp commands----
CONSTANT skip_rom_c : std_logic_vector(7 DOWNTO 0) := x"CC"; --command to skip ROM identity of temperature sensor
CONSTANT convert_temp_c : std_logic_vector(7 DOWNTO 0) := x"44"; --command to start temperature conversion
CONSTANT read_scratchpad_c : std_logic_vector(7 DOWNTO 0) := x"BE"; --command to read the scratchpad i.e. get temperature data
CONSTANT command_bits_c : integer RANGE 0 TO 8 := 8; --number of bits in the above commands (note: range used to limit number of bits to minimum needed)
CONSTANT data_bits_c : integer RANGE 0 to 12 := 12; --number of bits in received data
----1-wire commands----
CONSTANT send_reset_pulse : std_logic_vector(7 DOWNTO 0) := "00001010"; --command to send reset pulse
CONSTANT write_command_structure_c : std_logic_vector(6 DOWNTO 0) := "0000000"; --structure of the command that must be passed to the 1-wire controller (----EDIT----)
----timing constants----
CONSTANT delay_65us_c : integer := one_us_divider_g * 65; --65 micro-second delay
CONSTANT delay_960us_c : integer := one_us_divider_g * 960; --960 micro-second delay
CONSTANT delay_750ms : integer := one_us_divider_g * 1000 * 750; --760 milli-second delay
----state machine----
TYPE state_type IS (idle, presence_pulse, wait_presence_pulse, skip_rom, temp_conversion, wait_for_conversion,
read_scratchpad, data_read, convert_data, wait_65us);
SIGNAL state : state_type := idle;
SIGNAL previous_state : state_type := idle;
----1-wire----
SIGNAL read_enable_s, write_enable_s, reset_s, owr_e_s : std_logic := '0';
SIGNAL write_data_s, read_data_s : std_logic_vector(7 DOWNTO 0):= (OTHERS => '0'); --8 bit mode chosen in sockit_owm
SIGNAL address_s : std_logic_vector(1 DOWNTO 0) := "00";
SIGNAL timer_s : integer := 0;
----commands---
SIGNAL bit_counter_command_s : integer RANGE 0 TO command_bits_c := 0; --counter for bits in commands (note: not -1 due to using 9th bit as state change)
SIGNAL bit_counter_data_s : integer RANGE 0 TO data_bits_c := 0; --counter for bits in data recieved
----temperature----
SIGNAL temperature_raw_data : std_logic_vector(11 DOWNTO 0) := (OTHERS => '0');
----one wire control----
COMPONENT sockit_owm IS
PORT (
----control interface----
clk : IN std_logic;
rst : IN std_logic;
bus_ren : IN std_logic;
bus_wen : IN std_logic;
bus_adr : IN std_logic_vector(7 DOWNTO 0);
bus_wdt : IN std_logic_vector(7 DOWNTO 0);
bus_rdt : OUT std_logic_vector(7 DOWNTO 0);
bus_irq : OUT std_logic;
----1-wire interface----
owr_p : OUT std_logic; --verilog code is a one bit wide vector
owr_e : OUT std_logic;
owr_i : IN std_logic
);
END COMPONENT;
BEGIN
address_s <= "00"; --for the temp probe control we're not interested in other address spaces
PROCESS(i_clk_50mhz) BEGIN --state change
IF rising_edge(i_clk_50mhz) THEN
CASE state is
WHEN idle =>
o_temp_ready <= '0';
IF (i_read_enable = '1') THEN
state <= presence_pulse;
ELSE
state <= idle;
END IF;
WHEN presence_pulse =>
----send reset/presence pulse----
write_enable_s <= '1';
write_data_s <= send_reset_pulse;
timer_s <= delay_960us_c;
state <= wait_presence_pulse;
WHEN wait_presence_pulse =>
----wait for 960 micro seconds----
read_enable_s <= '1';
IF (timer_s = 0) THEN
IF (read_data_s(0) = '0') THEN
state <= skip_rom;
ELSIF (read_data_s(0) = '1') THEN
--precence not detected
ELSE
state <= wait_presence_pulse;
END IF;
ELSE
timer_s <= timer_s - 1;
state <= wait_presence_pulse;
END IF;
WHEN skip_rom =>
----send skip rom command----
previous_state <= skip_rom;
write_enable_s <= '1';
IF (bit_counter_command_s = command_bits_c) THEN
bit_counter_command_s <= 0;
state <= temp_conversion;
ELSE
write_data_s <= write_command_structure_c & skip_rom_c(bit_counter_command_s); ---command structure concatonated with 1 bit from command
bit_counter_command_s <= bit_counter_command_s + 1;
timer_s <= delay_65us_c;
state <= wait_65us;
END IF;
WHEN temp_conversion =>
----send temp conversion command to probe----
previous_state <= temp_conversion;
IF (bit_counter_command_s = bit_counter_command_s) THEN
bit_counter_command_s <= 0;
timer_s <= delay_750ms;
state <= wait_for_conversion;
ELSE
write_data_s <= write_command_structure_c & convert_temp_c(bit_counter_command_s); ---command structure concatonated with 1 bit from command
bit_counter_command_s <= bit_counter_command_s + 1;
timer_s <= delay_65us_c;
state <= wait_65us;
END IF;
WHEN wait_for_conversion =>
----wait for temperature conversion to finish----
IF (timer_s = 0) then
state <= read_scratchpad;
ELSE
timer_s <= timer_s - 1;
END IF;
WHEN read_scratchpad =>
----send read scratchpad command----
previous_state <= read_scratchpad;
IF (bit_counter_command_s = command_bits_c) THEN
state <= data_read;
bit_counter_command_s <= 0;
ELSE
write_data_s <= write_command_structure_c & read_scratchpad_c(bit_counter_command_s); ---command structure concatonated with 1 bit from command
bit_counter_command_s <= bit_counter_command_s + 1;
timer_s <= delay_65us_c;
state <= wait_65us;
END IF;
WHEN data_read =>
----read incoming data----
previous_state <= data_read;
read_enable_s <= '1';
IF (bit_counter_data_s = data_bits_c) THEN
bit_counter_data_s <= 0; --may need to invert this
state <= convert_data;
ELSE
temperature_raw_data(bit_counter_data_s) <= read_data_s(0);
bit_counter_data_s <= bit_counter_data_s + 1;
timer_s <= delay_65us_c;
state <= wait_65us;
END IF;
WHEN convert_data =>
----convert raw data into temperature----
o_temp_ready <= '1';
WHEN wait_65us =>
----wait for read/write cycle to finish----
IF (timer_s = 0) THEN
state <= previous_state;
ELSE
timer_s <= timer_s - 1;
state <= wait_65us;
END IF;
END CASE;
END IF;
END PROCESS;
----one wire component instantiation----
one_wire_control : sockit_owm
PORT MAP(
----control interface----
clk => i_clk_50mhz,
rst => reset_s,
bus_ren => read_enable_s,
bus_wen => write_enable_s,
bus_adr => address_s,
bus_wdt => write_data_s,
bus_rdt => read_data_s,
bus_irq => OPEN,
----1-wire interface----
owr_p => OPEN,
owr_e => owr_e_s,
owr_i => io_temp_probe
);
io_temp_probe <= owr_e_s ? '0' : 'Z'; --I also need help converting this line to VHDL
END rtl;
先感谢您。最好的汤姆