我正在尝试在 .csv 数据集(5008 列,533 行)上训练模型。我正在使用文本阅读器将数据解析为两个张量,一个保存要在 [example] 上训练的数据,另一个保存正确的标签 [label]:
def read_my_file_format(filename_queue):
reader = tf.TextLineReader()
key, record_string = reader.read(filename_queue)
record_defaults = [[0.5] for row in range(5008)]
#Left out most of the columns for obvious reasons
col1, col2, col3, ..., col5008 = tf.decode_csv(record_string, record_defaults=record_defaults)
example = tf.stack([col1, col2, col3, ..., col5007])
label = col5008
return example, label
def input_pipeline(filenames, batch_size, num_epochs=None):
filename_queue = tf.train.string_input_producer(filenames, num_epochs=num_epochs, shuffle=True)
example, label = read_my_file_format(filename_queue)
min_after_dequeue = 10000
capacity = min_after_dequeue + 3 * batch_size
example_batch, label_batch = tf.train.shuffle_batch([example, label], batch_size=batch_size, capacity=capacity, min_after_dequeue=min_after_dequeue)
return example_batch, label_batch
这部分正在工作,当执行类似的事情时:
with tf.Session() as sess:
ex_b, l_b = input_pipeline(["Tensorflow_vectors.csv"], 10, 1)
print("Test: ",ex_b)
我的结果是Test: Tensor("shuffle_batch:0", shape=(10, 5007), dtype=float32)
到目前为止,这对我来说似乎很好。接下来,我创建了一个包含两个隐藏层(分别为 512 和 256 个节点)的简单模型。当我尝试训练模型时,出现问题的地方是:
batch_x, batch_y = input_pipeline(["Tensorflow_vectors.csv"], batch_size)
_, cost = sess.run([optimizer, cost], feed_dict={x: batch_x.eval(), y: batch_y.eval()})
I've based this approach on this example that uses the MNIST database.
However, when I'm executing this, even when I'm just using batch_size = 1
, Tensorflow just hangs. If I leave out the .eval()
functions that should get the actual data from the tensors, I get the following response:
TypeError: The value of a feed cannot be a tf.Tensor object. Acceptable feed values include Python scalars, strings, lists, or numpy ndarrays.
Now this I can understand, but I don't understand why the program hangs when I do include the .eval()
function and I don't know where I could find any information about this issue.
EDIT: I included the most recent version of my entire script here. The program still hangs even though I implemented (as far as I know correctly) the solution that was offered by vijay m