7

我很难用 ggplot2 重新创建一个 excel 示例。我尝试了很多例子,但由于某种原因,我无法达到我想要的结果。有人可以看看我的例子吗?

df <- structure(list(OccuranceCT = c(4825, 9063, 10635, 8733, 5594, 
2850, 1182, 376, 135, 30, 11), TimesReshop = structure(1:11, .Label = c("1x", 
"2x", "3x", "4x", "5x", "6x", "7x", "8x", "9x", "10x", "11x"), class = "factor"), 
    AverageRepair_HrsPerCar = c(7.48951898445596, 6.50803925852367, 
    5.92154446638458, 5.5703551356922, 5.38877037897748, 5.03508435087719, 
    4.92951776649746, 4.83878377659575, 4.67829259259259, 4.14746333333333, 
    3.54090909090909)), .Names = c("OccuranceCT", "TimesReshop", 
"AverageRepair_HrsPerCar"), row.names = c(NA, 11L), class = "data.frame")

到目前为止我的情节:

Plot <- ggplot(df, aes(x=TimesReshop, y=OccuranceCT)) +
  geom_bar(stat = "identity", color="red", fill="#C00000") +
  labs(x = "Car Count", y = "Average Repair Per Hour") + 
  geom_text(aes(label=OccuranceCT), fontface="bold", vjust=1.4, color="black", size=4) +
  theme_minimal()

Plot

这是我到目前为止得到的:

1

我想要实现的是:

2

我将不胜感激学习如何添加辅助轴并将条形图与线图相结合。

4

2 回答 2

6

ggplot2支持双轴(无论好坏),其中第二个轴是主轴的线性变换。

对于这种情况,我们可以解决:

library(ggplot2)
ggplot(df, aes(x = TimesReshop)) +
  geom_col(aes( y = OccuranceCT, fill="redfill")) +
  geom_text(aes(y = OccuranceCT, label = OccuranceCT), fontface = "bold", vjust = 1.4, color = "black", size = 4) +
  geom_line(aes(y = AverageRepair_HrsPerCar * 1500, group = 1, color = 'blackline')) +
  geom_text(aes(y = AverageRepair_HrsPerCar * 1500, label = round(AverageRepair_HrsPerCar, 2)), vjust = 1.4, color = "black", size = 3) +
  scale_y_continuous(sec.axis = sec_axis(trans = ~ . / 1500)) +
  scale_fill_manual('', labels = 'Occurance', values = "#C00000") +
  scale_color_manual('', labels = 'Time Reshop', values = 'black') +
  theme_minimal()

于 2017-06-19T23:07:31.147 回答
5

此答案是对您的评论的回复,而不是对原始问题的回复。

从宽变长意味着我们有一列用于因变量(OccuranceCT、AverageRepair_HrsPerCar),另一列用于它们的值。然后我们可以将每一个绘制成条形,在它们自己的方面,如下所示:

library(tidyr)
library(ggplot2)

df %>% 
  gather(variable, value, -TimesReshop) %>% 
  ggplot(aes(TimesReshop, value)) + 
    geom_col() + 
    facet_grid(variable ~ ., scales = "free")

这允许对变量进行快速的视觉比较,而不会因将具有完全不同值的不同变量放在同一图中而产生潜在的误导性解释。

在此处输入图像描述

于 2017-06-19T23:33:15.677 回答