4

我正在使用 sklearn 包练习 K-Means 聚类。我正在使用示例购物数据集,其中包含每个客户在每个项目类别(即食品、时尚、数字等)中花费的金额。

有 42 个特征,意思是我用来输入 K-Means 的 42 个项目类别。当我在 2 - 50 之间检查 k 的轮廓系数时,结果如下所示:

结果

For n_clusters=2, The Silhouette Coefficient is 0.296883351294 
For n_clusters=3, The Silhouette Coefficient is 0.429716008727
For n_clusters=4, The Silhouette Coefficient is 0.5379833453
For n_clusters=5, The Silhouette Coefficient is 0.640200087198
For n_clusters=6, The Silhouette Coefficient is 0.720988889121
For n_clusters=7, The Silhouette Coefficient is 0.754509135746
For n_clusters=8, The Silhouette Coefficient is 0.824498184042
For n_clusters=9, The Silhouette Coefficient is 0.859505132529
For n_clusters=10, The Silhouette Coefficient is 0.886719390512
For n_clusters=11, The Silhouette Coefficient is 0.909094073152
For n_clusters=12, The Silhouette Coefficient is 0.924484657787
For n_clusters=13, The Silhouette Coefficient is 0.935920328988
For n_clusters=14, The Silhouette Coefficient is 0.941202266924
For n_clusters=15, The Silhouette Coefficient is 0.944696312832
For n_clusters=16, The Silhouette Coefficient is 0.94973283735
For n_clusters=17, The Silhouette Coefficient is 0.953130541493
For n_clusters=18, The Silhouette Coefficient is 0.956455183621
For n_clusters=19, The Silhouette Coefficient is 0.959253033224
For n_clusters=20, The Silhouette Coefficient is 0.962360042108
For n_clusters=21, The Silhouette Coefficient is 0.964250208432
For n_clusters=22, The Silhouette Coefficient is 0.967326417612
For n_clusters=23, The Silhouette Coefficient is 0.969331109452
For n_clusters=24, The Silhouette Coefficient is 0.971127562002
For n_clusters=25, The Silhouette Coefficient is 0.972261973972
For n_clusters=26, The Silhouette Coefficient is 0.9734445716
For n_clusters=27, The Silhouette Coefficient is 0.974238560202
For n_clusters=28, The Silhouette Coefficient is 0.97488260729
For n_clusters=29, The Silhouette Coefficient is 0.97531193231
For n_clusters=30, The Silhouette Coefficient is 0.974524792419
For n_clusters=31, The Silhouette Coefficient is 0.975612314038
For n_clusters=32, The Silhouette Coefficient is 0.975737449165
For n_clusters=33, The Silhouette Coefficient is 0.976396323376
For n_clusters=34, The Silhouette Coefficient is 0.977655049988
For n_clusters=35, The Silhouette Coefficient is 0.977653124893
For n_clusters=36, The Silhouette Coefficient is 0.977692656935
For n_clusters=37, The Silhouette Coefficient is 0.977631627533
For n_clusters=38, The Silhouette Coefficient is 0.978547753839
For n_clusters=39, The Silhouette Coefficient is 0.978886776953
For n_clusters=40, The Silhouette Coefficient is 0.979381767137
For n_clusters=41, The Silhouette Coefficient is 0.9796349521
For n_clusters=42, The Silhouette Coefficient is 0.979461929477
For n_clusters=43, The Silhouette Coefficient is 0.980920963377
For n_clusters=44, The Silhouette Coefficient is 0.980129624336
For n_clusters=45, The Silhouette Coefficient is 0.981374785468
For n_clusters=46, The Silhouette Coefficient is 0.980656482976
For n_clusters=47, The Silhouette Coefficient is 0.982323770297
For n_clusters=48, The Silhouette Coefficient is 0.982538183341
For n_clusters=49, The Silhouette Coefficient is 0.982842003856

我不知道如何利用这个结果。在我看来,随着我的前进,s 越来越大。我这样做对吗?还是我应该尝试不同的集群评估方法?

4

1 回答 1

4

一个点的轮廓衡量了一个点与其集群与下一个最近的集群的相似程度。这是与聚类中心的距离比,标准化后“1”是与其聚类的完美匹配,“-1”是完美的不匹配。

(注意:聚类中心的使用可能是 k-means 聚类所特有的。)

集群的轮廓是其所有成员的平均轮廓。这意味着实践是更大的数字意味着集群与其他集群“分离”。

我认为轮廓是测量沿集群边界的点的密度。当轮廓很高时,边界点很少。这就是你想要的——分离良好的集群。

使用 k-means 时,小的“离群值”集群通常会有大的轮廓。通常较大的集群具有密集的边界。看看尺寸和轮廓对你来说会很有趣。

于 2017-06-18T03:10:41.543 回答