0

我想使用 ggplot https://rud.is/b/2013/01/11/slopegraphs-in-r/在 R 中创建一个斜率图

在清理数据并融化数据框后,我遇到了这样的错误:错误:美学必须是长度 1 或与数据相同(182):x、y、组、颜色、标签

我的数据中没有 NA。有任何想法吗?非常感激!


这是代码

#Read file as numeric data
betterlife<-read.csv("betterlife.csv",skip=4,stringsAsFactors = F)
num_data <- data.frame(data.matrix(betterlife))
numeric_columns <- sapply(num_data,function(x){mean(as.numeric(is.na(x)))<0.5})
final_data <- data.frame(num_data[,numeric_columns], 
betterlife[,!numeric_columns])

## rescale selected columns data frame
final_data <- data.frame(lapply(final_data[,c(3,4,5,6,7,10,11)], function(x) scale(x, center = FALSE, scale = max(x, na.rm = TRUE)/100)))

## Add country names as indicator
final_data["INDICATOR"] <- NA 
final_data$INDICATOR <- betterlife$INDICATOR
employment.data <- final_data[5:30,]
indicator <- employment.data$INDICATOR
## Melt data to draw graph
employment.melt <- melt(employment.data)


#plot
sg = ggplot(employment.melt, aes(factor(variable), value, 
                 group = indicator, 
                 colour = indicator, 
                 label = indicator)) +
  theme(legend.position = "none", 
    axis.text.x = element_text(size=5),
    axis.text.y=element_blank(), 
    axis.title.x=element_blank(),
    axis.title.y=element_blank(),
    axis.ticks=element_blank(),
    axis.line=element_blank(),
    panel.grid.major.x = element_line("black", size = 0.1),
    panel.grid.major.y = element_blank(),
    panel.grid.minor.y = element_blank(),
    panel.background = element_blank())
sg1

这是我正在使用的数据

输入(更好的生活)

structure(list(X = c("", "ISO3", "AUS", "AUT", "BEL", "CAN", 
"CHL", "CZE", "DNK", "EST", "FIN", "FRA", "DEU", "GRC", "HUN", 
"ISL", "IRL", "ISR", "ITA", "JPN", "KOR", "LUX", "MEX", "NLD", 
"NZL", "NOR", "POL", "PRT", "SVK", "SVN", "ESP", "SWE", "CHE", 
"TUR", "GBR", "USA", "OECD", "", ""), 
INDICATOR = c("UNIT", "COUNTRY", 
"Australia", "Austria", "Belgium", "Canada", "Chile", "Czech Republic", 
"Denmark", "Estonia", "Finland", "France", "Germany", "Greece", 
"Hungary", "Iceland", "Ireland", "Israel", "Italy", "Japan", 
"Korea", "Luxembourg", "Mexico", "Netherlands", "New Zealand", 
"Norway", "Poland", "Portugal", "Slovak Republic", "Slovenia", 
"Spain", "Sweden", "Switzerland", "Turkey", "United Kingdom", 
"United States", "OECD average", "", "n.a. : not available"), 

Rooms.per.person = c("Average number of rooms shared per person in a dwelling", 
"", "2.4", "1.7", "2.3", "2.5", "1.3", "1.3", "1.9", "1.2", 
"1.9", "1.8", "1.7", "1.2", "1", "1.6", "2.1", "1.1", "1.4", 
"1.8", "1.3", "1.9", "1.566666667", "2", "2.3", "1.9", "1", 
"1.5", "1.1", "1.1", "1.9", "1.8", "1.7", "0.7", "1.8", "1.605208333", 
"1.6", "", ""), 
Dwelling.without.basic.facilities = c("% of people without indoor flushing toilets in their home", 
"", "3.425714286", "1.3", "0.6", "2.722", "9.36", "0.7", 
"0", "12.2", "0.8", "0.8", "1.2", "1.8", "7.1", "0.3", "0.3", 
"2.52", "0.2", "6.4", "7.46", "0.8", "6.6", "0", "2.984285714", 
"0.1", "4.8", "2.4", "1.1", "0.6", "0", "0", "0.1", "17.1", 
"0.5", "0", "2.82", "", ""), 
Household.disposable.income = c("USD (PPPs adjusted)", 
"", "27,039", "27,670", "26,008", "27,015", "8,712", "16,690", 
"22,929", "13,486", "24,246", "27,508", "27,665", "21,499", 
"13,858", "19,621", "24,313", "22,539", "24,383", "23,210", 
"16,254", "19,621", "12,182", "25,977", "18,819", "29,366", 
"13,811", "18,540", "15,490", "19,890", "22,972", "26,543", 
"27,542", "21,030", "27,208", "37,685", "22,284", "", ""), 
Employment.rate = c("% of the working age population (15-64)", 
"", "72.3", "71.73", "62.01", "71.68", "59.32", "65", "73.44", 
"61.02", "68.15", "63.99", "71.1", "59.55", "55.4", "78.17", 
"59.96", "59.21", "56.89", "70.11", "63.31", "65.21", "60.39", 
"74.67", "72.34", "75.31", "59.26", "65.55", "58.76", "66.2", 
"58.55", "72.73", "78.59", "46.29", "69.51", "66.71", "64.52", 
"", ""), 
Long.term.unemployment.rate = c("% of people, aged 15-64, who are not working but have been actively seeking a job for over a year", 
"", "1", "1.13", "4.07", "0.97", "2.98375", "3.19", "1.44", 
"7.84", "2.01", "3.75", "3.4", "5.73", "5.68", "1.35", "6.74", 
"1.85", "4.13", "1.99", "0.01", "1.29", "0.13", "1.24", "0.6", 
"0.34", "2.49", "5.97", "8.56", "3.21", "9.1", "1.42", "1.49", 
"3.11", "2.59", "2.85", "2.74", "", ""), 
Quality.of.support.network = c("% of people who have friends or relatives to rely on in case of need", 
"", "95.4", "94.6", "92.6", "95.3", "85.2", "88.9", "96.8", 
"84.6", "93.4", "93.9", "93.5", "86.1", "88.6", "97.6", "97.3", 
"93", "86", "89.7", "79.8", "95", "87.1", "94.8", "97.1", 
"93.1", "92.2", "83.3", "89.6", "90.7", "94.1", "96.2", "93.2", 
"78.8", "94.9", "92.3", "91.1", "", ""), 
Educational.attainment = c("% of people, aged 15-64, having at least an upper-secondary (high-school) degree", 
"", "69.72", "81.04", "69.58", "87.07", "67.97", "90.9", 
"74.56", "88.48", "81.07", "69.96", "85.33", "61.07", "79.7", 
"64.13", "69.45", "81.23", "53.31", "87", "79.14", "67.94", 
"33.55", "73.29", "72.05", "80.7", "87.15", "28.25", "89.93", 
"82.04", "51.23", "85.04", "86.81", "30.31", "69.63", "88.7", 
"72.95", "", ""), 
Students.reading.skills = c("Average reading performance of students aged 15, according to PISA", 
"", "515", "470", "506", "524", "449", "478", "495", "501", 
"536", "496", "497", "483", "494", "500", "496", "474", "486", 
"520", "539", "472", "425", "508", "521", "503", "500", "489", 
"477", "483", "481", "497", "501", "464", "494", "500", "493", 
"", ""), 
Air.pollution = c("Average concentration of particulate matter (PM10) in cities with population larger than 100 000, measured in micrograms  per cubic meter", 
"", "14.28", "29.03", "21.27", "15", "61.55", "18.5", "16.26", 
"12.62", "14.87", "12.94", "16.21", "32", "15.6", "14.47", 
"12.54", "27.57", "23.33", "27.14", "30.76", "12.63", "32.69", 
"30.76", "11.93", "15.85", "35.07", "21", "13.14", "29.03", 
"27.56", "10.52", "22.36", "37.06", "12.67", "19.4", "21.99", 
"", ""), 
Consultation.on.rule.making = c("Composite index, increasing with the number of key elements of formal consultation processes", 
"", "10.5", "7.13", "4.5", "10.5", "2", "6.75", "7", "3.25", 
"9", "3.5", "4.5", "6.5", "7.88", "5.13", "9", "2.5", "5", 
"7.25", "10.38", "6", "9", "6.13", "10.25", "8.13", "10.75", 
"6.5", "6.63", "10.25", "7.25", "10.88", "8.38", "5.5", "11.5", 
"8.25", "7.28", "", ""), 
Voter.turnout = c("Number of people voting as % of the registered population ", 
"", "95", "82", "91", "60", "88", "64", "87", "62", "74", 
"84", "78", "74", "64", "84", "67", "65", "81", "67", "63", 
"57", "59", "80", "79", "77", "54", "64", "55", "63", "75", 
"82", "48", "84", "61", "90", "72", "", ""), 
Life.expectancy = c("Average number of years a person can expect to live", 
"", "81.5", "80.5", "79.8", "80.7", "77.8", "77.3", "78.8", 
"73.9", "79.9", "81", "80.2", "80", "73.8", "81.3", "79.9", 
"81.1", "81.5", "82.7", "79.9", "80.6", "75.1", "80.2", "80.4", 
"80.6", "75.6", "79.3", "74.8", "78.8", "81.2", "81.2", "82.2", 
"73.6", "79.7", "77.9", "79.2", "", ""), 
Self.reported.health = c("% of people reporting their health to be \"good or very good\"", 
"", "84.9", "69.6", "76.7", "88.1", "56.2", "68.2", "74.3", 
"56.3", "67.7", "72.4", "64.7", "76.4", "55.2", "80.6", "84.4", 
"79.7", "63.4", "32.7", "43.7", "74", "65.5", "80.6", "89.7", 
"80", "57.7", "48.6", "31.1", "58.8", "69.8", "79.1", "80.95", 
"66.8", "76", "88", "69", "", ""), 
Life.Satisfaction = c("Average self-evaluation of life satisfaction, on a scale from 0 to 10", 
"", "7.5", "7.3", "6.9", "7.7", "6.6", "6.2", "7.8", "5.1", 
"7.4", "6.8", "6.7", "5.8", "4.7", "6.9", "7.3", "7.4", "6.4", 
"6.1", "6.1", "7.1", "6.8", "7.5", "7.2", "7.6", "5.8", "4.9", 
"6.1", "6.1", "6.2", "7.5", "7.5", "5.5", "7", "7.2", "6.7", 
"", ""), 
Homicide.rate = c("Average number of reported homicides per 100 000 people", 
"", "1.2", "0.5", "1.8", "1.7", "8.1", "2", "1.4", "6.3", 
"2.5", "1.4", "0.8", "1.1", "1.5", "0", "2", "2.4", "1.2", 
"0.5", "2.3", "1.5", "11.6", "1", "1.3", "0.6", "1.2", "1.2", 
"1.7", "0.5", "0.9", "0.9", "0.7", "2.9", "2.6", "5.2", "2.1", 
"", ""), 
Assault.rate = c("% of people who report having been assaulted in the previous year", 
"", "2.1", "3", "7.3", "1.4", "9.5", "3.5", "3.9", "6.2", 
"2.4", "4.9", "3.6", "3.8", "3.8", "2.7", "2.7", "3.1", "4.7", 
"1.6", "2.1", "4.3", "14.8", "5", "2.3", "3.3", "2.2", "6.2", 
"3.5", "3.9", "4.2", "5.2", "4.2", "6", "1.9", "1.6", "4.1", 
"", "")), 
.Names = c("X", "INDICATOR", "Rooms.per.person", "Dwelling.without.basic.facilities", 
"Household.disposable.income", "Employment.rate", 
"Long.term.unemployment.rate", "Quality.of.support.network", 
"Educational.attainment", "Students.reading.skills", "Air.pollution", 
"Consultation.on.rule.making", "Voter.turnout", "Life.expectancy", 
"Self.reported.health", "Life.Satisfaction", "Homicide.rate", 
"Assault.rate"), class = "data.frame", row.names = c(NA, -39L))

我是否错误地融化了数据框?因为每行的索引顺序不正确

4

0 回答 0