我正在尝试用 Java 构建这个二叉搜索树: 这是我的链接二叉搜索树实现类:
/**
* LinkedBinarySearchTree implements the BinarySearchTreeADT interface
* with links.
*
* @author Java Foundations
* @version 4.0
*/
public class LinkedBinarySearchTree<T> extends LinkedBinaryTree<T>
implements BinarySearchTreeADT<T>
{
/**
* Creates an empty binary search tree.
*/
public LinkedBinarySearchTree()
{
super();
}
/**
* Creates a binary search with the specified element as its root.
*
* @param element the element that will be the root of the new binary
* search tree
*/
public LinkedBinarySearchTree(T element)
{
super(element);
if (!(element instanceof Comparable))
throw new NonComparableElementException("LinkedBinarySearchTree");
}
/**
* Adds the specified object to the binary search tree in the
* appropriate position according to its natural order. Note that
* equal elements are added to the right.
*
* @param element the element to be added to the binary search tree
*/
public void addElement(T element)
{
if (!(element instanceof Comparable))
throw new NonComparableElementException("LinkedBinarySearchTree");
Comparable<T> comparableElement = (Comparable<T>)element;
if (isEmpty())
root = new BinaryTreeNode<T>(element);
else
{
if (comparableElement.compareTo(root.getElement()) < 0)
{
if (root.getLeft() == null)
this.getRootNode().setLeft(new BinaryTreeNode<T>(element));
else
addElement(element, root.getLeft());
}
else
{
if (root.getRight() == null)
this.getRootNode().setRight(new BinaryTreeNode<T>(element));
else
addElement(element, root.getRight());
}
}
modCount++;
}
/**
* Adds the specified object to the binary search tree in the
* appropriate position according to its natural order. Note that
* equal elements are added to the right.
*
* @param element the element to be added to the binary search tree
*/
private void addElement(T element, BinaryTreeNode<T> node)
{
Comparable<T> comparableElement = (Comparable<T>)element;
if (comparableElement.compareTo(node.getElement()) < 0)
{
if (node.getLeft() == null)
node.setLeft(new BinaryTreeNode<T>(element));
else
addElement(element, node.getLeft());
}
else
{
if (node.getRight() == null)
node.setRight(new BinaryTreeNode<T>(element));
else
addElement(element, node.getRight());
}
}
/**
* Removes the first element that matches the specified target
* element from the binary search tree and returns a reference to
* it. Throws a ElementNotFoundException if the specified target
* element is not found in the binary search tree.
*
* @param targetElement the element being sought in the binary search tree
* @throws ElementNotFoundException if the target element is not found
*/
public T removeElement(T targetElement)
throws ElementNotFoundException
{
T result = null;
if (isEmpty())
throw new ElementNotFoundException("LinkedBinarySearchTree");
else
{
BinaryTreeNode<T> parent = null;
if (((Comparable<T>)targetElement).equals(root.element))
{
result = root.element;
BinaryTreeNode<T> temp = replacement(root);
if (temp == null)
root = null;
else
{
root.element = temp.element;
root.setRight(temp.right);
root.setLeft(temp.left);
}
modCount--;
}
else
{
parent = root;
if (((Comparable)targetElement).compareTo(root.element) < 0)
result = removeElement(targetElement, root.getLeft(), parent);
else
result = removeElement(targetElement, root.getRight(), parent);
}
}
return result;
}
/**
* Removes the first element that matches the specified target
* element from the binary search tree and returns a reference to
* it. Throws a ElementNotFoundException if the specified target
* element is not found in the binary search tree.
*
* @param targetElement the element being sought in the binary search tree
* @param node the node from which to search
* @param parent the parent of the node from which to search
* @throws ElementNotFoundException if the target element is not found
*/
private T removeElement(T targetElement, BinaryTreeNode<T> node, BinaryTreeNode<T> parent)
throws ElementNotFoundException
{
T result = null;
if (node == null)
throw new ElementNotFoundException("LinkedBinarySearchTree");
else
{
if (((Comparable<T>)targetElement).equals(node.element))
{
result = node.element;
BinaryTreeNode<T> temp = replacement(node);
if (parent.right == node)
parent.right = temp;
else
parent.left = temp;
modCount--;
}
else
{
parent = node;
if (((Comparable)targetElement).compareTo(node.element) < 0)
result = removeElement(targetElement, node.getLeft(), parent);
else
result = removeElement(targetElement, node.getRight(), parent);
}
}
return result;
}
/**
* Returns a reference to a node that will replace the one
* specified for removal. In the case where the removed node has
* two children, the inorder successor is used as its replacement.
*
* @param node the node to be removed
* @return a reference to the replacing node
*/
private BinaryTreeNode<T> replacement(BinaryTreeNode<T> node)
{
BinaryTreeNode<T> result = null;
if ((node.left == null) && (node.right == null))
result = null;
else if ((node.left != null) && (node.right == null))
result = node.left;
else if ((node.left == null) && (node.right != null))
result = node.right;
else
{
BinaryTreeNode<T> current = node.right;
BinaryTreeNode<T> parent = node;
while (current.left != null)
{
parent = current;
current = current.left;
}
current.left = node.left;
if (node.right != current)
{
parent.left = current.right;
current.right = node.right;
}
result = current;
}
return result;
}
/**
* Removes elements that match the specified target element from
* the binary search tree. Throws a ElementNotFoundException if
* the specified target element is not found in this tree.
*
* @param targetElement the element being sought in the binary search tree
* @throws ElementNotFoundException if the target element is not found
*/
public void removeAllOccurrences(T targetElement)
throws ElementNotFoundException
{
removeElement(targetElement);
try
{
while (contains((T)targetElement))
removeElement(targetElement);
}
catch (Exception ElementNotFoundException)
{
}
}
/**
* Removes the node with the least value from the binary search
* tree and returns a reference to its element. Throws an
* EmptyCollectionException if this tree is empty.
*
* @return a reference to the node with the least value
* @throws EmptyCollectionException if the tree is empty
*/
public T removeMin() throws EmptyCollectionException
{
T result = null;
if (isEmpty())
throw new EmptyCollectionException("LinkedBinarySearchTree");
else
{
if (root.left == null)
{
result = root.element;
root = root.right;
}
else
{
BinaryTreeNode<T> parent = root;
BinaryTreeNode<T> current = root.left;
while (current.left != null)
{
parent = current;
current = current.left;
}
result = current.element;
parent.left = current.right;
}
modCount--;
}
return result;
}
/**
* Removes the node with the highest value from the binary
* search tree and returns a reference to its element. Throws an
* EmptyCollectionException if this tree is empty.
*
* @return a reference to the node with the highest value
* @throws EmptyCollectionException if the tree is empty
*/
public T removeMax() throws EmptyCollectionException
{
T result = null;
if (isEmpty())
throw new EmptyCollectionException ("binary tree");
else
{
if (root.right == null)
{
result = root.element;
root = root.left;
} //if
else
{
BinaryTreeNode<T> parent = root;
BinaryTreeNode<T> current = root.right;
while (current.right != null)
{
parent = current;
current = current.right;
} //while
result = current.element;
parent.right = current.left;
} //else
modCount--;
} //else
return result;
}
/**
* Returns the element with the least value in the binary search
* tree. It does not remove the node from the binary search tree.
* Throws an EmptyCollectionException if this tree is empty.
*
* @return the element with the least value
* @throws EmptyCollectionException if the tree is empty
*/
public T findMin() throws EmptyCollectionException
{
T result = null;
if (isEmpty())
throw new EmptyCollectionException ("binary tree");
else
{
BinaryTreeNode<T> current = root;
while (current.left != null)
current = current.left;
result = current.element;
} //else
return result;
}
/**
* Returns the element with the highest value in the binary
* search tree. It does not remove the node from the binary
* search tree. Throws an EmptyCollectionException if this
* tree is empty.
*
* @return the element with the highest value
* @throws EmptyCollectionException if the tree is empty
*/
public T findMax() throws EmptyCollectionException
{
T result = null;
if (isEmpty())
throw new EmptyCollectionException ("binary tree");
else
{
BinaryTreeNode<T> current = root;
while (current.right != null)
current = current.right;
result = current.element;
} //else
return result;
}
/**
* Returns a reference to the specified target element if it is
* found in the binary tree. Throws a NoSuchElementException if
* the specified target element is not found in this tree.
*
* @param targetElement the element being sought in the binary tree
* @throws ElementNotFoundException if the target element is not found
*/
public T find(T targetElement) throws ElementNotFoundException
{
BinaryTreeNode<T> current = root;
BinaryTreeNode<T> temp = current;
if (!(current.element.equals(targetElement)) && (current.left !=null)&&(((Comparable)current.element).compareTo(targetElement) > 0))
current = findNode( targetElement, current.left);
else if (!(current.element.equals(targetElement)) && (current.right != null))
current = findNode( targetElement, current.right);
if (!(current.element.equals(targetElement)))
throw new ElementNotFoundException ("binarytree");
return current.element;
}
/**
* Returns the left subtree of the root of this tree.
*
* @return a link to the left subtree of the tree
*/
public LinkedBinarySearchTree<T> getLeft()
{
if (root == null)
throw new EmptyCollectionException("getLeft failed - the tree is empty");
LinkedBinarySearchTree <T> result = new LinkedBinarySearchTree<T> ();
result.root = root.getLeft();
return result;
}
/**
* Returns the right subtree of the root of this tree.
*
* @return a link to the right subtree of the tree
*/
public LinkedBinarySearchTree<T> getRight()
{
if (root == null)
throw new EmptyCollectionException("getLeft failed - the tree is empty");
LinkedBinarySearchTree <T> result = new LinkedBinarySearchTree<T> ();
result.root = root.getRight();
return result;
}
/**
* Returns a reference to the specified target element if it is
* found in this tree.
*
* @param targetElement the element being sought in the tree
* @param next the tree node to begin searching on
*/
private BinaryTreeNode<T> findNode(T targetElement, BinaryTreeNode<T> next)
{
BinaryTreeNode<T> current = next;
if (!(next.element.equals(targetElement)) && (next.left !=null) &&(((Comparable)next.element).compareTo(targetElement) > 0))
next = findNode( targetElement, next.left);
else if (!(next.element.equals(targetElement)) && (next.right != null))
next = findNode( targetElement, next.right);
return next;
}
/*balances the binary search tree so that it maintains
* the maximum difference of the path lengths of the
* left and right children as not more than one*/
public void balance() {
//verify if balance factor of the root of the tree is -2
if(getBalanceFactor(root) == -2) {
//verify if balance factor of left child of tree root is 1
if(getBalanceFactor(root.left) == 1)
root = leftRightRotation(root);
else
root = rightRotation(root);
}
//verify if balance factor of tree root is 2
else if(getBalanceFactor(root) == 2) {
//verify if balance factor of right child of tree root is -1
if(getBalanceFactor(root.right) == -1) {
root = rightLeftRotation(root);
}
else
root = leftRotation(root);
}
}
/*performs right rotation and left rotation, then returns new root*/
private BinaryTreeNode<T> rightLeftRotation(BinaryTreeNode<T> current) {
current.right = rightRotation(current.right);
current = leftRotation(current);
return current;
}
/*performs left rotation then right rotation then returns new root*/
private BinaryTreeNode<T> leftRightRotation(BinaryTreeNode<T> current) {
current.left = leftRotation(current.left);
current = rightRotation(current);
return current;
}
/*returns new root after performing right rotation of specified node*/
private BinaryTreeNode<T> rightRotation(BinaryTreeNode<T> current) {
BinaryTreeNode<T> newRoot = current.left;
BinaryTreeNode<T> temp = newRoot.right;
newRoot.right = current;
current.left = temp;
return newRoot;
}
//returns new root after performing left rotation of specified node
private BinaryTreeNode<T> leftRotation(BinaryTreeNode<T> current) {
BinaryTreeNode<T> newRoot = current.right;
BinaryTreeNode<T> temp = newRoot.left;
newRoot.left = current;
current.right = temp;
return newRoot;
}
//returns difference between path lengths of heights of left and right sides of root
private int getBalanceFactor(BinaryTreeNode<T> current) {
int leftHeight = getHeight(current.left);
int rightHeight = getHeight(current.right);
return(rightHeight - leftHeight);
}
//returns the height of the specified node
private int getHeight(BinaryTreeNode<T> newRoot) {
if(newRoot == null)
return 0;
else
return 1 + Math.max(getHeight(newRoot.left), getHeight(newRoot.right));
}
}
这是我的驱动程序,我的最终目标是从上图创建二叉搜索树,平衡它,并测试它是否平衡:
import java.util.*;
import java.io.*;
public class IsHeightBalanced {
public static void main(String[] args) {
LinkedBinarySearchTree<int> tree = new LinkedBinarySearchTree<int>;
tree.addElement(13);
tree.addElement(7);
tree.addElement(15);
tree.addElement(5);
tree.addElement(10);
tree.addElement(3);
}
}
现在我只是想从这里的图片和这条线构建那个二叉搜索树
LinkedBinarySearchTree<int> tree = new LinkedBinarySearchTree<int>();
给了我诸如“插入尺寸以完成参考类型”之类的错误
为什么会出现这样的错误?我在创建上图中看到的二叉搜索树的正确轨道上吗?谢谢。