我也在研究sf
包的功能,所以如果这不正确或有更好的方法,我深表歉意。我认为这里的一个问题是,如果像在您的示例中那样构建几何图形,您将无法获得您的想法:
> pts
Simple feature collection with 1 feature and 0 fields
geometry type: MULTIPOINT
dimension: XY
bbox: xmin: 0.5 ymin: 0.5 xmax: 3 ymax: 3
epsg (SRID): NA
proj4string: NA
st_sfc.mpt.
1 MULTIPOINT(0.5 0.5, 0.6 0.6...
> polys
Simple feature collection with 1 feature and 0 fields
geometry type: MULTIPOLYGON
dimension: XY
bbox: xmin: 0 ymin: 0 xmax: 2 ymax: 2
epsg (SRID): NA
proj4string: NA
st_sfc.mpol.
1 MULTIPOLYGON(((0 0, 1 0, 1 ...
您可以看到您在pts
和 中只有一个“功能” polys
。这意味着您正在构建一个“多面”特征(即由 3 个部分构成的多边形),而不是三个不同的多边形。积分也是一样。
经过一番挖掘,我发现使用 WKT 表示法构建几何图形的这种不同(并且在我看来更容易)方法:
polys <- st_as_sfc(c("POLYGON((0 0 , 0 1 , 1 1 , 1 0, 0 0))",
"POLYGON((0 0 , 0 2 , 2 2 , 2 0, 0 0 ))",
"POLYGON((0 0 , 0 -1 , -1 -1 , -1 0, 0 0))")) %>%
st_sf(ID = paste0("poly", 1:3))
pts <- st_as_sfc(c("POINT(0.5 0.5)",
"POINT(0.6 0.6)",
"POINT(3 3)")) %>%
st_sf(ID = paste0("point", 1:3))
> polys
Simple feature collection with 3 features and 1 field
geometry type: POLYGON
dimension: XY
bbox: xmin: -1 ymin: -1 xmax: 2 ymax: 2
epsg (SRID): NA
proj4string: NA
ID .
1 poly1 POLYGON((0 0, 0 1, 1 1, 1 0...
2 poly2 POLYGON((0 0, 0 2, 2 2, 2 0...
3 poly3 POLYGON((0 0, 0 -1, -1 -1, ...
> pts
Simple feature collection with 3 features and 1 field
geometry type: POINT
dimension: XY
bbox: xmin: 0.5 ymin: 0.5 xmax: 3 ymax: 3
epsg (SRID): NA
proj4string: NA
ID .
1 point1 POINT(0.5 0.5)
2 point2 POINT(0.6 0.6)
3 point3 POINT(3 3)
您现在可以看到两者都polys
具有 pts
三个功能。
我们现在可以使用以下方法找到“交集矩阵”:
# Determine which points fall inside which polygons
pi <- st_contains(polys,pts, sparse = F) %>%
as.data.frame() %>%
mutate(polys = polys$ID) %>%
select(dim(pi)[2],1:dim(pi)[1])
colnames(pi)[2:dim(pi)[2]] = levels(pts$ID)
> pi
polys point1 point2 point3
1 poly1 TRUE TRUE FALSE
2 poly2 TRUE TRUE FALSE
3 poly3 FALSE FALSE FALSE
意思是(正如评论中指出的@symbolixau)多边形1和2包含点1和2,而多边形3不包含任何点。相反,点 3 不包含在任何多边形中。
HTH。