如何在 for 循环中迭代张量?..
我想对 input_tensor 的每一行进行卷积...但似乎无法在张量中迭代。
目前正在尝试这样:
def row_convolution(input):
filter_size = 8
print input.dtype
print input.get_shape()
for units in xrange(splits):
extract = input[units:units+filter_size,:,:]
for row_of_extract in extract:
for unit in row_of_extract:
temp_list.append((Conv1D(filters = 1, kernel_size = 1, activation='relu' , name = 'conv')(unit)))
print len(temp_list)
sum_temp_list.append(sum(temp_list))
sum_sum_temp_list.append(sum(sum_temp_list))
conv_feature_map.append(sum_sum_temp_list)
return np.array(conv_feature_map)