6

如何编写 Python 代码来检查由 Cayley 表定义的集合 {0,1,..,n−1} 上的操作 ∗ 是否是关联的。

我尝试的代码是:

def is_associative_cayley_table(table):
    if not is_cayley_table(table):
        return False

    for i in range (0,len(table)):
        for j in range (0,len(table)):
            for k in range (0,len(table)):
                if (table[table[i][j])][k])==(table[i][(table[j][k])]):
                   print("Okay")
                else
                   return False
4

2 回答 2

4

您可能只想"Okay" n^3返回bool.

def is_associative_cayley_table(table):
    if not is_cayley_table(table):
        return False

    for i in range (0,len(table)):
        for j in range (0,len(table)):
            for k in range (0,len(table)):
                if (table[table[i][j])][k])!=(table[i][(table[j][k])]):
                   return False
    return True

此外,还没有算法来检查集合的关联性。
你必须使用蛮力。

您能做的最好的事情是使用Light 的关联性测试,它“不会改善O(n^3).

于 2017-04-20T00:45:29.270 回答
0

或者使用生成器理解python

def is_associative(table, n):
    return all(table[x][table[a][y]] == table[table[x][a]][y] \
           for a in np.arange(n) for x in range(n) for y in range(n))

# calay table for ({0,1,...,n-1}, +n), addition modulo n, which is an Abelian group

n = 4
calay_table = np.zeros((n, n), dtype=int)
calay_table[0] = np.arange(n)
for i in range(1, n):
    calay_table[i] = np.roll(calay_table[i-1],-1)

print(calay_table)
# [[0 1 2 3]
# [1 2 3 0]
# [2 3 0 1]
# [3 0 1 2]]

is_associative(calay_table, n)
# True

我们可以巧妙地实现Light 的关联性测试

于 2022-01-05T23:44:20.510 回答