我有以下代码提取用于计算迭代成本函数。在此之前,已经完成了特征缩放、resharp、lstm 和训练,并使用相同的数据和变量集来执行成本函数的计算。
# learning parameter
learning_rate = 0.01
# iterative parameters
EPOCHS = 1000 # number of iterations
PRINT_STEP = 100 # the interval of printing validation result
# read data and data preprocessings
read_data_pd = pd.read_csv('./price.csv')
input_pd = read_data_pd.drop(['year','month','day'], axis=1)
temp_pd = feature_scaling(input_pd[feature_to_scale],sacling_meathod) # call the function feature scaling
input_pd[feature_to_scale] = temp_pd
x_ = tf.placeholder(tf.float32, [None, batch_size, n_features])
y_ = tf.placeholder(tf.float32, [None, 1])
# call the lstm-rnn function
lstm_output = lstm(x_, n_features, batch_size, n_lstm_layers, lstm_scope_name)
# linear regressor
# w is the weight vector
W = tf.Variable(tf.random_normal([n_features, n_pred_class]))
# b is the bias
b = tf.Variable(tf.random_normal([n_pred_class]))
# Y = WX + b
y = tf.matmul(lstm_output, W) + b
#define the cost function
cost_func = tf.reduce_mean(tf.square(y - y_))
train_op = tf.train.AdamOptimizer(learning_rate).minimize(cost_func)
# initialize all variables
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
for ii in range(EPOCHS):
sess.run(train_op, feed_dict={x_:train_input_nparr, y_:train_target_nparr})
if ii % PRINT_STEP == 0:
cost = sess.run(cost_func, feed_dict={x_:train_input_nparr, y_:train_target_nparr})
print 'iteration =', ii, 'training cost:', cost
当我运行程序时,成本函数计算结果的打印工作。然而,每次程序运行时,结果都不同。例如,100 次迭代的结果有时会打印 0.868856,但有时可能是 0.905526,这意味着代码有问题。
我注意到的一件事是初始化所有变量的行:tf.initialize_all_variables()
正如消息所说
initialize_all_variables is deprecated and will be removed after 2017-03-02.
Instructions for updating: Use `tf.global_variables_initializer` instead.
我按照说明进行,但是修改计算错误没有效果。
因此,我想知道代码有什么问题以及如何纠正它?