113

我有一个目录,其中包含图像的子文件夹(根据标签)。我想在 Keras 中使用 ImageDataGenerator 时将这些数据拆分为训练集和测试集。尽管 keras 中的 model.fit() 具有用于指定拆分的参数 validation_split,但我无法为 model.fit_generator() 找到相同的参数。怎么做 ?

train_datagen = ImageDataGenerator(rescale=1./255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True)

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_width, img_height),
    batch_size=32,
    class_mode='binary')

model.fit_generator(
    train_generator,
    samples_per_epoch=nb_train_samples,
    nb_epoch=nb_epoch,
    validation_data=??,
    nb_val_samples=nb_validation_samples)

我没有用于验证数据的单独目录,需要将其从训练数据中拆分出来

4

12 回答 12

222

Keras 现在使用 ImageDataGenerator 添加了从单个目录拆分的训练/验证:

train_datagen = ImageDataGenerator(rescale=1./255,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    validation_split=0.2) # set validation split

train_generator = train_datagen.flow_from_directory(
    train_data_dir,
    target_size=(img_height, img_width),
    batch_size=batch_size,
    class_mode='binary',
    subset='training') # set as training data

validation_generator = train_datagen.flow_from_directory(
    train_data_dir, # same directory as training data
    target_size=(img_height, img_width),
    batch_size=batch_size,
    class_mode='binary',
    subset='validation') # set as validation data

model.fit_generator(
    train_generator,
    steps_per_epoch = train_generator.samples // batch_size,
    validation_data = validation_generator, 
    validation_steps = validation_generator.samples // batch_size,
    epochs = nb_epochs)

https://keras.io/preprocessing/image/

于 2018-09-17T16:21:41.200 回答
25

例如,您有这样的文件夹

full_dataset
|--horse (40 images)
|--donkey (30 images)
|--cow ((50 images)
|--zebra (70 images)

第一种方式

image_generator = ImageDataGenerator(rescale=1/255, validation_split=0.2)    

train_dataset = image_generator.flow_from_directory(batch_size=32,
                                                 directory='full_dataset',
                                                 shuffle=True,
                                                 target_size=(280, 280), 
                                                 subset="training",
                                                 class_mode='categorical')

validation_dataset = image_generator.flow_from_directory(batch_size=32,
                                                 directory='full_dataset',
                                                 shuffle=True,
                                                 target_size=(280, 280), 
                                                 subset="validation",
                                                 class_mode='categorical')

第二种方式

import glob
horse = glob.glob('full_dataset/horse/*.*')
donkey = glob.glob('full_dataset/donkey/*.*')
cow = glob.glob('full_dataset/cow/*.*')
zebra = glob.glob('full_dataset/zebra/*.*')

data = []
labels = []

for i in horse:   
    image=tf.keras.preprocessing.image.load_img(i, color_mode='RGB', 
    target_size= (280,280))
    image=np.array(image)
    data.append(image)
    labels.append(0)
for i in donkey:   
    image=tf.keras.preprocessing.image.load_img(i, color_mode='RGB', 
    target_size= (280,280))
    image=np.array(image)
    data.append(image)
    labels.append(1)
for i in cow:   
    image=tf.keras.preprocessing.image.load_img(i, color_mode='RGB', 
    target_size= (280,280))
    image=np.array(image)
    data.append(image)
    labels.append(2)
for i in zebra:   
    image=tf.keras.preprocessing.image.load_img(i, color_mode='RGB', 
    target_size= (280,280))
    image=np.array(image)
    data.append(image)
    labels.append(3)

data = np.array(data)
labels = np.array(labels)

from sklearn.model_selection import train_test_split
X_train, X_test, ytrain, ytest = train_test_split(data, labels, test_size=0.2,
                                                random_state=42)

第一种方式的主要缺点,您不能用于显示图片。如果你写它会出错validation_dataset[1]。但如果我使用第一种方法,它会起作用:X_test[1]

于 2020-03-25T01:10:09.953 回答
11

如果我们subset在 ImageDataGenerator 中使用,那么相同的增强将应用于训练和验证。如果您只想在训练集上应用扩充,您可以使用split-folders可以直接使用安装的包拆分文件夹pip

https://pypi.org/project/split-folders/

这会将数据集分成 train、val 和 test 目录,然后您可以为每个目录创建单独的生成器。

于 2020-02-07T06:23:02.650 回答
8

我有一个PR。一种方法是散列文件名并进行变体分配。

例子:

# -*- coding: utf-8 -*-
"""Train model using transfer learning."""
import os
import re
import glob
import hashlib
import argparse
import warnings

import six
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
from keras.models import Model
from keras import backend as K
from keras.optimizers import SGD
from keras.layers import Dense, GlobalAveragePooling2D, Input
from keras.applications.inception_v3 import InceptionV3
from keras.preprocessing.image import (ImageDataGenerator, Iterator,
                                       array_to_img, img_to_array, load_img)
from keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping

RANDOM_SEED = 0
MAX_NUM_IMAGES_PER_CLASS = 2 ** 27 - 1  # ~134M
VALID_IMAGE_FORMATS = frozenset(['jpg', 'jpeg', 'JPG', 'JPEG'])
# we chose to train the top 2 inception blocks
BATCH_SIZE = 100
TRAINABLE_LAYERS = 172
INCEPTIONV3_BASE_LAYERS = len(InceptionV3(weights=None, include_top=False).layers)

STEPS_PER_EPOCH = 625
VALIDATION_STEPS = 100
MODEL_INPUT_WIDTH = 299
MODEL_INPUT_HEIGHT = 299
MODEL_INPUT_DEPTH = 3
FC_LAYER_SIZE = 1024

# Helper: Save the model.
checkpointer = ModelCheckpoint(
    filepath='./output/checkpoints/inception.{epoch:03d}-{val_loss:.2f}.hdf5',
    verbose=1,
    save_best_only=True)

# Helper: Stop when we stop learning.
early_stopper = EarlyStopping(patience=10)

# Helper: TensorBoard
tensorboard = TensorBoard(log_dir='./output/')


def as_bytes(bytes_or_text, encoding='utf-8'):
    """Converts bytes or unicode to `bytes`, using utf-8 encoding for text.

    # Arguments
        bytes_or_text: A `bytes`, `str`, or `unicode` object.
        encoding: A string indicating the charset for encoding unicode.

    # Returns
        A `bytes` object.

    # Raises
        TypeError: If `bytes_or_text` is not a binary or unicode string.
    """
    if isinstance(bytes_or_text, six.text_type):
        return bytes_or_text.encode(encoding)
    elif isinstance(bytes_or_text, bytes):
        return bytes_or_text
    else:
        raise TypeError('Expected binary or unicode string, got %r' %
                        (bytes_or_text,))


class CustomImageDataGenerator(ImageDataGenerator):
    def flow_from_image_lists(self, image_lists,
                              category, image_dir,
                              target_size=(256, 256), color_mode='rgb',
                              class_mode='categorical',
                              batch_size=32, shuffle=True, seed=None,
                              save_to_dir=None,
                              save_prefix='',
                              save_format='jpeg'):
        return ImageListIterator(
            image_lists, self,
            category, image_dir,
            target_size=target_size, color_mode=color_mode,
            class_mode=class_mode,
            data_format=self.data_format,
            batch_size=batch_size, shuffle=shuffle, seed=seed,
            save_to_dir=save_to_dir,
            save_prefix=save_prefix,
            save_format=save_format)


class ImageListIterator(Iterator):
    """Iterator capable of reading images from a directory on disk.

    # Arguments
        image_lists: Dictionary of training images for each label.
        image_data_generator: Instance of `ImageDataGenerator`
            to use for random transformations and normalization.
        target_size: tuple of integers, dimensions to resize input images to.
        color_mode: One of `"rgb"`, `"grayscale"`. Color mode to read images.
        classes: Optional list of strings, names of sudirectories
            containing images from each class (e.g. `["dogs", "cats"]`).
            It will be computed automatically if not set.
        class_mode: Mode for yielding the targets:
            `"binary"`: binary targets (if there are only two classes),
            `"categorical"`: categorical targets,
            `"sparse"`: integer targets,
            `None`: no targets get yielded (only input images are yielded).
        batch_size: Integer, size of a batch.
        shuffle: Boolean, whether to shuffle the data between epochs.
        seed: Random seed for data shuffling.
        data_format: String, one of `channels_first`, `channels_last`.
        save_to_dir: Optional directory where to save the pictures
            being yielded, in a viewable format. This is useful
            for visualizing the random transformations being
            applied, for debugging purposes.
        save_prefix: String prefix to use for saving sample
            images (if `save_to_dir` is set).
        save_format: Format to use for saving sample images
            (if `save_to_dir` is set).
    """

    def __init__(self, image_lists, image_data_generator,
                 category, image_dir,
                 target_size=(256, 256), color_mode='rgb',
                 class_mode='categorical',
                 batch_size=32, shuffle=True, seed=None,
                 data_format=None,
                 save_to_dir=None, save_prefix='', save_format='jpeg'):
        if data_format is None:
            data_format = K.image_data_format()

        classes = list(image_lists.keys())
        self.category = category
        self.num_class = len(classes)
        self.image_lists = image_lists
        self.image_dir = image_dir

        how_many_files = 0
        for label_name in classes:
            for _ in self.image_lists[label_name][category]:
                how_many_files += 1

        self.samples = how_many_files
        self.class2id = dict(zip(classes, range(len(classes))))
        self.id2class = dict((v, k) for k, v in self.class2id.items())
        self.classes = np.zeros((self.samples,), dtype='int32')

        self.image_data_generator = image_data_generator
        self.target_size = tuple(target_size)
        if color_mode not in {'rgb', 'grayscale'}:
            raise ValueError('Invalid color mode:', color_mode,
                             '; expected "rgb" or "grayscale".')
        self.color_mode = color_mode
        self.data_format = data_format
        if self.color_mode == 'rgb':
            if self.data_format == 'channels_last':
                self.image_shape = self.target_size + (3,)
            else:
                self.image_shape = (3,) + self.target_size
        else:
            if self.data_format == 'channels_last':
                self.image_shape = self.target_size + (1,)
            else:
                self.image_shape = (1,) + self.target_size

        if class_mode not in {'categorical', 'binary', 'sparse', None}:
            raise ValueError('Invalid class_mode:', class_mode,
                             '; expected one of "categorical", '
                             '"binary", "sparse", or None.')
        self.class_mode = class_mode
        self.save_to_dir = save_to_dir
        self.save_prefix = save_prefix
        self.save_format = save_format

        i = 0
        self.filenames = []
        for label_name in classes:
            for j, _ in enumerate(self.image_lists[label_name][category]):
                self.classes[i] = self.class2id[label_name]
                img_path = get_image_path(self.image_lists,
                                          label_name,
                                          j,
                                          self.image_dir,
                                          self.category)
                self.filenames.append(img_path)
                i += 1

        print("Found {} {} files".format(len(self.filenames), category))
        super(ImageListIterator, self).__init__(self.samples, batch_size, shuffle,
                                                seed)

    def next(self):
        """For python 2.x.

        # Returns
            The next batch.
        """
        with self.lock:
            index_array, current_index, current_batch_size = next(
                self.index_generator)
        # The transformation of images is not under thread lock
        # so it can be done in parallel
        batch_x = np.zeros((current_batch_size,) + self.image_shape,
                           dtype=K.floatx())
        grayscale = self.color_mode == 'grayscale'
        # build batch of image data
        for i, j in enumerate(index_array):
            img = load_img(self.filenames[j],
                           grayscale=grayscale,
                           target_size=self.target_size)
            x = img_to_array(img, data_format=self.data_format)
            x = self.image_data_generator.random_transform(x)
            x = self.image_data_generator.standardize(x)
            batch_x[i] = x
        # optionally save augmented images to disk for debugging purposes
        if self.save_to_dir:
            for i in range(current_batch_size):
                img = array_to_img(batch_x[i], self.data_format, scale=True)
                fname = '{prefix}_{index}_{hash}.{format}'.format(
                    prefix=self.save_prefix,
                    index=current_index + i,
                    hash=np.random.randint(10000),
                    format=self.save_format)
                img.save(os.path.join(self.save_to_dir, fname))
        # build batch of labels
        if self.class_mode == 'sparse':
            batch_y = self.classes[index_array]
        elif self.class_mode == 'binary':
            batch_y = self.classes[index_array].astype(K.floatx())
        elif self.class_mode == 'categorical':
            batch_y = np.zeros((len(batch_x), self.num_class),
                               dtype=K.floatx())
            for i, label in enumerate(self.classes[index_array]):
                batch_y[i, label] = 1.
        else:
            return batch_x
        return batch_x, batch_y


# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/image_retraining/retrain.py
def create_image_lists(image_dir, validation_pct=10):
    """Builds a list of training images from the file system.

    Analyzes the sub folders in the image directory, splits them into stable
    training, testing, and validation sets, and returns a data structure
    describing the lists of images for each label and their paths.

    # Arguments
        image_dir: string path to a folder containing subfolders of images.
        validation_pct: integer percentage of images reserved for validation.

    # Returns
        dictionary of label subfolder, with images split into training
        and validation sets within each label.
    """
    if not os.path.isdir(image_dir):
        raise ValueError("Image directory {} not found.".format(image_dir))
    image_lists = {}
    sub_dirs = [x[0] for x in os.walk(image_dir)]
    sub_dirs_without_root = sub_dirs[1:]  # first element is root directory
    for sub_dir in sub_dirs_without_root:
        file_list = []
        dir_name = os.path.basename(sub_dir)
        if dir_name == image_dir:
            continue
        print("Looking for images in '{}'".format(dir_name))
        for extension in VALID_IMAGE_FORMATS:
            file_glob = os.path.join(image_dir, dir_name, '*.' + extension)
            file_list.extend(glob.glob(file_glob))
        if not file_list:
            warnings.warn('No files found')
            continue
        if len(file_list) < 20:
            warnings.warn('Folder has less than 20 images, which may cause '
                          'issues.')
        elif len(file_list) > MAX_NUM_IMAGES_PER_CLASS:
            warnings.warn('WARNING: Folder {} has more than {} images. Some '
                          'images will never be selected.'
                          .format(dir_name, MAX_NUM_IMAGES_PER_CLASS))
        label_name = re.sub(r'[^a-z0-9]+', ' ', dir_name.lower())
        training_images = []
        validation_images = []
        for file_name in file_list:
            base_name = os.path.basename(file_name)
            # Get the hash of the file name and perform variant assignment.
            hash_name = hashlib.sha1(as_bytes(base_name)).hexdigest()
            hash_pct = ((int(hash_name, 16) % (MAX_NUM_IMAGES_PER_CLASS + 1)) *
                        (100.0 / MAX_NUM_IMAGES_PER_CLASS))
            if hash_pct < validation_pct:
                validation_images.append(base_name)
            else:
                training_images.append(base_name)
        image_lists[label_name] = {
            'dir': dir_name,
            'training': training_images,
            'validation': validation_images,
        }
    return image_lists


# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/image_retraining/retrain.py
def get_image_path(image_lists, label_name, index, image_dir, category):
    """"Returns a path to an image for a label at the given index.

    # Arguments
      image_lists: Dictionary of training images for each label.
      label_name: Label string we want to get an image for.
      index: Int offset of the image we want. This will be moduloed by the
      available number of images for the label, so it can be arbitrarily large.
      image_dir: Root folder string of the subfolders containing the training
      images.
      category: Name string of set to pull images from - training, testing, or
      validation.

    # Returns
      File system path string to an image that meets the requested parameters.
    """
    if label_name not in image_lists:
        raise ValueError('Label does not exist ', label_name)
    label_lists = image_lists[label_name]
    if category not in label_lists:
        raise ValueError('Category does not exist ', category)
    category_list = label_lists[category]
    if not category_list:
        raise ValueError('Label %s has no images in the category %s.',
                         label_name, category)
    mod_index = index % len(category_list)
    base_name = category_list[mod_index]
    sub_dir = label_lists['dir']
    full_path = os.path.join(image_dir, sub_dir, base_name)
    return full_path


def get_generators(image_lists, image_dir):
    train_datagen = CustomImageDataGenerator(rescale=1. / 255,
                                             horizontal_flip=True)

    test_datagen = CustomImageDataGenerator(rescale=1. / 255)

    train_generator = train_datagen.flow_from_image_lists(
        image_lists=image_lists,
        category='training',
        image_dir=image_dir,
        target_size=(MODEL_INPUT_HEIGHT, MODEL_INPUT_WIDTH),
        batch_size=BATCH_SIZE,
        class_mode='categorical',
        seed=RANDOM_SEED)

    validation_generator = test_datagen.flow_from_image_lists(
        image_lists=image_lists,
        category='validation',
        image_dir=image_dir,
        target_size=(MODEL_INPUT_HEIGHT, MODEL_INPUT_WIDTH),
        batch_size=BATCH_SIZE,
        class_mode='categorical',
        seed=RANDOM_SEED)

    return train_generator, validation_generator


def get_model(num_classes, weights='imagenet'):
    # create the base pre-trained model
    # , input_tensor=input_tensor
    base_model = InceptionV3(weights=weights, include_top=False)

    # add a global spatial average pooling layer
    x = base_model.output
    x = GlobalAveragePooling2D()(x)
    # let's add a fully-connected layer
    x = Dense(FC_LAYER_SIZE, activation='relu')(x)
    # and a logistic layer -- let's say we have 2 classes
    predictions = Dense(num_classes, activation='softmax')(x)

    # this is the model we will train
    model = Model(inputs=[base_model.input], outputs=[predictions])
    return model


def get_top_layer_model(model):
    """Used to train just the top layers of the model."""
    # first: train only the top layers (which were randomly initialized)
    # i.e. freeze all convolutional InceptionV3 layers
    for layer in model.layers[:INCEPTIONV3_BASE_LAYERS]:
        layer.trainable = False
    for layer in model.layers[INCEPTIONV3_BASE_LAYERS:]:
        layer.trainable = True

    # compile the model (should be done after setting layers to non-trainable)
    model.compile(optimizer='rmsprop', loss='categorical_crossentropy',
                  metrics=['accuracy'])

    return model


def get_mid_layer_model(model):
    """After we fine-tune the dense layers, train deeper."""
    # freeze the first TRAINABLE_LAYER_INDEX layers and unfreeze the rest
    for layer in model.layers[:TRAINABLE_LAYERS]:
        layer.trainable = False
    for layer in model.layers[TRAINABLE_LAYERS:]:
        layer.trainable = True

    # we need to recompile the model for these modifications to take effect
    # we use SGD with a low learning rate
    model.compile(optimizer=SGD(lr=0.0001, momentum=0.9),
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    return model


def train_model(model, epochs, generators, callbacks=None):
    train_generator, validation_generator = generators
    model.fit_generator(
        train_generator,
        steps_per_epoch=STEPS_PER_EPOCH,
        validation_data=validation_generator,
        validation_steps=VALIDATION_STEPS,
        epochs=epochs,
        callbacks=callbacks)
    return model


def main(image_dir, validation_pct):
    sub_dirs = [x[0] for x in gfile.Walk(image_dir)]
    num_classes = len(sub_dirs) - 1
    print("Number of classes found: {}".format(num_classes))

    model = get_model(num_classes)

    print("Using validation percent of %{}".format(validation_pct))
    image_lists = create_image_lists(image_dir, validation_pct)

    generators = get_generators(image_lists, image_dir)

    # Get and train the top layers.
    model = get_top_layer_model(model)
    model = train_model(model, epochs=10, generators=generators)

    # Get and train the mid layers.
    model = get_mid_layer_model(model)
    _ = train_model(model, epochs=100, generators=generators,
                    callbacks=[checkpointer, early_stopper, tensorboard])

    # save model
    model.save('./output/model.hdf5', overwrite=True)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--image-dir', required=True, help='data directory')
    parser.add_argument('--validation-pct', default=10, help='validation percentage')
    args = parser.parse_args()

    os.makedirs('./output/checkpoints/', exist_ok=True)

    main(**vars(args))
于 2017-04-05T02:04:52.963 回答
8

参考这个问题https://github.com/keras-team/keras/issues/597,您可以使用以下代码将整个集合拆分为train和val:

train_datagen = ImageDataGenerator(rescale=1./255,
                                   rotation_range=20,
                                   width_shift_range=0.2,
                                   height_shift_range=0.2,
                                   horizontal_flip=True
                                   validation_split=0.2)  # val 20%

val_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.2)


train_data = train_datagen.flow_from_directory(train_path, 
                                               target_size=(224, 224), 
                                               color_mode='rgb',
                                               batch_size=BS, 
                                               class_mode='categorical',
                                               shuffle=True,
                                               subset = 'training') 

val_data = val_datagen.flow_from_directory(train_path, 
                                           target_size=(224, 224), 
                                           color_mode='rgb',
                                           batch_size=BS, 
                                           class_mode='categorical',
                                           shuffle=False,
                                           subset = 'validation')
于 2021-03-09T11:21:13.640 回答
1

如果您只是想划分数据集进行训练和验证(没有任何扩充等)

from tensorflow.keras.applications.xception import preprocess_input
from tensorflow.keras.preprocessing.image import ImageDataGenerator

ds_gen = ImageDataGenerator(
    preprocessing_function=preprocess_input,
    validation_split=0.2 
)

train_ds = ds_gen.flow_from_directory(
  "/path/to/dataset", 
  seed=1,
  target_size=(150, 150), #adjust to your needs
  batch_size=32,#adjust to your needs
  class_mode='categorical',
  subset='training' 
)

val_ds = ds_gen.flow_from_directory(
  "/path/to/dataset",
  seed=1,
  target_size=(150, 150),
  batch_size=32,
  class_mode='categorical',
  subset='validation'
)


于 2021-06-26T19:08:47.083 回答
1

这是一个简单的 tensorflow 2.0 代码

from tensorflow.keras.preprocessing.image import ImageDataGenerator

def image_data_generator(data_dir,
                       data_augment=False,
                       batch_size=BATCH_SIZE,
                       target_size=(100, 100),
                       color_mode='rgb',
                       class_mode='binary',
                       shuffle=True):
  if data_augment:
      datagen = ImageDataGenerator(rescale=1./255,
                                   rotation_range=20,
                                   width_shift_range=0.2,
                                   height_shift_range=0.2,
                                   shear_range=0.2,
                                   zoom_range=0.2,
                                   validation_split=0.2,#this is the trick
                                   horizontal_flip=True)
  else:
      datagen = ImageDataGenerator(rescale=1./255)

  generator = datagen.flow_from_directory(data_dir,
                                          target_size=target_size,
                                          color_mode=color_mode,
                                          batch_size=batch_size,
                                          shuffle=shuffle,
                                          class_mode=class_mode)
  return generator

train_generator = image_data_generator('Your_DataBase_Path',data_augment=True)
于 2020-03-02T17:57:20.663 回答
1

如果您想使用 VGG16 模型的预处理单元并将您的数据集拆分为 70% 的训练和 30% 的验证,请遵循以下方法:

train_path = 'your dataset path'
train_batch= 
ImageDataGenerator(preprocessing_function=tf.keras.applications.vgg16.preprocess_input, validation_split=0.3) \
.flow_from_directory(directory=train_path, target_size=(,), classes=['',''], batch_size= ,class_mode='categorical', subset='training')
val_batch= 
ImageDataGenerator(preprocessing_function=tf.keras.applications.vgg16.preprocess_input, validation_split=0.3) \
.flow_from_directory(directory=train_path, target_size=(,), classes=['',''], batch_size=, class_mode='categorical', subset='validation')
于 2021-01-14T07:54:16.560 回答
0

如果您正在为分割任务寻找生成器中的训练/验证拆分,您可以使用以下代码段:

from tensorflow.keras.preprocessing.image import ImageDataGenerator

BATCH_SIZE = 16
val_fraction = 0.1
image_generator = ImageDataGenerator(rescale=1/255,
                                     brightness_range=[0.75, 1.75],
                                     validation_split=val_fraction)

mask_generator = ImageDataGenerator(validation_split=val_fraction)

train_image_generator = image_generator.flow_from_dataframe(df_img,
                                                            directory=image_dir,
                                                            x_col='image',
                                                            class_mode=None,
                                                            color_mode='rgb',
                                                            target_size=(INPUT_SIZE, INPUT_SIZE),
                                                            batch_size=BATCH_SIZE,
                                                            shuffle=True,
                                                            subset='training',
                                                            seed=1)

train_mask_generator = mask_generator.flow_from_dataframe(df_gt,
                                                          directory=gt_dir,
                                                          x_col='mask',
                                                          color_mode='grayscale',
                                                          class_mode=None,
                                                          target_size=(INPUT_SIZE, INPUT_SIZE),
                                                          batch_size=BATCH_SIZE,
                                                          shuffle=True,
                                                          subset='training',
                                                          seed=1)

validation_image_generator = image_generator.flow_from_dataframe(df_img,
                                                            directory=image_dir,
                                                            x_col='image',
                                                            class_mode=None,
                                                            color_mode='rgb',
                                                            target_size=(INPUT_SIZE, INPUT_SIZE),
                                                            batch_size=BATCH_SIZE,
                                                            subset='validation',
                                                            seed=1)

validation_mask_generator = mask_generator.flow_from_dataframe(df_gt,
                                                          directory=gt_dir,
                                                          x_col='mask',
                                                          color_mode='grayscale',
                                                          class_mode=None,
                                                          target_size=(INPUT_SIZE, INPUT_SIZE),
                                                          batch_size=BATCH_SIZE,
                                                          subset='validation',
                                                          seed=1)

train_generator = zip(train_image_generator, train_mask_generator)
validation_generator = zip(validation_image_generator, validation_mask_generator)
于 2021-02-12T07:22:58.767 回答
0

这是答案:

data_path = 'path/to/dir'
data_gen = ImageDataGenerator(rescale=1./255,  validation_split=0.3)

train_data = data_gen.flow_from_directory(directory=data_path,target_size=img_size, batch_size=batch_size, subset='training', seed=42, class_mode='binary'  ) 
test_data = data_gen.flow_from_directory(directory=data_path,target_size=img_size, batch_size=batch_size, subset='validation', seed=42, class_mode='binary' ) 
于 2022-02-03T17:45:44.660 回答
0

如果您使用的是 TensorFlow 2.x,则可以使用相同的 fit() 函数并将参数 validation_split 也用于 Image ImageDataGenerator

于 2021-02-06T17:59:40.857 回答
0

我不知道您是否仍然感兴趣,但我找到了以下解决方法。最重要的函数是GetTrainValidTestGeneratorFromDir,其他的只是被它使用。基本思想是首先使用validation_split 将ImageDataGenerator 除以二。通过这种方式,您将获得两个迭代器。您可以使用第二个作为测试迭代器。您将通过以下方式进一步划分第一个:首先使用 flow_from_directory 使用训练子集(这样您可以确保排除测试数据)。现在您可以使用同一个生成器来获取两个划分的数据帧,然后您可以使用 flow_from_dataframe 函数。您将获得三个 ImageDataIterators 而无需更改文件夹

# -*- coding: utf-8 -*-
"""
Created on Thu Apr 15 10:15:18 2021

@author: Alessandro
"""
import pandas as pd
from keras.preprocessing.image import ImageDataGenerator


def ShuffleDataframe(thedataframe):
    thedataframe = thedataframe.sample(n=len(thedataframe), random_state=42)
    thedataframe = thedataframe.reset_index()
    thedataframe.drop('index', axis='columns', inplace=True)
    return(thedataframe)


def TransformGeneratorClassNumberToLabels(theGenerator, theLabelsNumbers):
    labelnames = theGenerator.class_indices
    labelnames =  list(labelnames.keys())
    theLabelsString = [labelnames[i] for i in theLabelsNumbers]
    return(theLabelsString)


def GetGeneratorDataframe(theGenerator):
    training_filenames = theGenerator.filenames    
    theLabelsNumbers = theGenerator.classes
    
    thelabelsString =  TransformGeneratorClassNumberToLabels(theGenerator, 
                                                             theLabelsNumbers)

    
    
    
    thedataframe = pd.DataFrame({'File': training_filenames,
                                'Label': thelabelsString})

    thedataframe = ShuffleDataframe(thedataframe)
    return(thedataframe)   

def GetTrainValidTestGeneratorFromDir(thedirectory,
                                      input_shape= (256, 256, 3),
                                      validation_split=0.1,
                                      rescaling = 1./255):
    
    train_datagen = ImageDataGenerator(rescale=1./255,
                                       validation_split=0.2)   
    
    
    train_and_valid_generator = train_datagen.flow_from_directory(thedirectory,
                                                                  target_size=input_shape[0:2],
                                                                  batch_size=20,
                                                                  class_mode="categorical",
                                                                  subset = 'training',
                                                                  save_to_dir ='checkdir')
    
    test_generator = train_datagen.flow_from_directory(thedirectory,
                                                       target_size=input_shape[0:2],
                                                       batch_size=20,
                                                       class_mode="categorical",
                                                       subset = 'validation')
    
    thedataframe = GetGeneratorDataframe(train_and_valid_generator)
    

    class_mode = "categorical"
        
    training_generator = train_datagen.flow_from_dataframe(dataframe = thedataframe,
                                                           directory = thedirectory,
                                                           target_size=input_shape[0:2],
                                                           x_col="File",
                                                           y_col = "Label",
                                                           subset= "training",
                                                           class_mode=class_mode)    


    validation_generator = train_datagen.flow_from_dataframe(dataframe = thedataframe,
                                                             directory = thedirectory,
                                                             target_size=input_shape[0:2],
                                                             x_col="File",
                                                             y_col = "Label",
                                                             subset= "validation",
                                                             class_mode=class_mode)
    return training_generator, validation_generator, test_generator 


input_shape = (450, 450, 3)
myDir      = "MyFolder"

(training_generator, 
 validation_generator, 
 test_generator) = GetTrainValidTestGeneratorFromDir(myDir)

# next part is just to verify whhat you got

training_dataframe = GetGeneratorDataframe(training_generator)
valid_dataframe = GetGeneratorDataframe(validation_generator)
test_dataframe = GetGeneratorDataframe(test_generator)
于 2021-04-15T08:33:57.053 回答