我已经使用 BEAST 运行了祖先状态重建,这给了我一个像这样的 Nexus 文件
#NEXUS
Begin taxa;
Dimensions ntax=93;
Taxlabels
adan1251
blag1240-nule
wers1238-marit
;
End;
Begin trees;
Translate
1 adan1251,
2 blag1240-nule,
3 wers1238-marit
;
tree STATE_0 = ((1[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.02243609504948792,2[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.02243609504948792)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.01067010801410265,3[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.03310620306359057)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.022661511629175332;
tree STATE_1 = ((1[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:1.02243609504948792,2[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.02243609504948792)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.01067010801410265,3[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.03310620306359057)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.022661511629175332;
tree STATE_2 = ((1[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:2.02243609504948792,2[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.02243609504948792)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.01067010801410265,3[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.03310620306359057)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.022661511629175332;
tree STATE_3 = ((1[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:3.02243609504948792,2[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.02243609504948792)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.01067010801410265,3[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.03310620306359057)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.022661511629175332;
tree STATE_4 = ((1[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:4.02243609504948792,2[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.02243609504948792)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.01067010801410265,3[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.03310620306359057)[&recon_lexicon:cooked rice="00000000000001",recon_lexicon:mountain="000000000001",recon_lexicon:to die="00001",recon_lexicon:wall="00000001"]:0.022661511629175332;
End;
(除了 20 倍的分类群,2000 倍的树木和实际不同的树木。)
我想可视化 intenal 和 tip 节点中词汇项的重建,似乎ape可能是一个很好的工具,因为它可以编写脚本,它可以读取 Nexus 文件(我尝试使用 read. nexus("filename.nex"), 似乎 str 是合理的) 并且从http://ape-package.ird.fr/ape_screenshots.html判断它可以以很好的格式显示重建:
在从原始数据构建某种共识树之后,如何让猿thermo
从 10000 棵不同的 Newick 树的评论 () 中给出的数据构建类似这棵树的东西?[&...]