我现在正在学习 Stan,想实现一个简单的混合模型。
在参考手册(stan-reference-2.14.0)中已经有一个解决方案:
data {
int<lower=1> K; // number of mixture components
int<lower=1> N; // number of data points
real y[N]; // observations
}
parameters {
simplex[K] theta; // mixing proportions
real mu[K]; // locations of mixture components
real<lower=0> sigma[K]; // scales of mixture components
}
model {
real ps[K]; // temp for log component densities
sigma ~ cauchy(0, 2.5);
mu ~ normal(0, 10);
for (n in 1:N) {
for (k in 1:K) {
ps[k] = log(theta[k])
+ normal_lpdf(y[n] | mu[k], sigma[k]);
}
target += log_sum_exp(ps);
}
}
下一页描述了外部循环的矢量化是不可能的。但是,我想知道内部循环的并行化是否仍然存在。
所以我尝试了以下模型:
data {
int<lower=1> K; // number of mixture components
int<lower=1> N; // number of data points
real y[N]; // observations
}
parameters {
simplex[K] theta; // mixing proportions
vector[K] mu; // locations of mixture components
vector<lower=0>[K] sigma; // scales of mixture components
}
model {
vector[K] ps;//[K]; // temp for log component densities
vector[K] ppt;
sigma ~ cauchy(0, 2.5);
mu ~ normal(0, 10);
for (n in 1:N) {
ppt = log(theta);
/*
for (k in 1:K) {
ps[k] = ppt[k] + //log(theta[k])
normal_lpdf(y[n] | mu[k], sigma[k]);
}
*/
ps = ppt + normal_lpdf(y[n] | mu, sigma);
target += log_sum_exp(ps);
}
}
...并且该模型做出错误的估计(与原始模型相反)。
data("faithful")
erupdata <- list(
K = 2,
N = length(faithful$eruptions),
y = faithful$eruptions
)
fiteruptions <- stan(file = 'mixturemodel.stan', data = erupdata, iter = 1000, chains = 1)
我想知道,我对模型规范的理解是错误的。我想了解语法提供的区别(以及vector[K]
和之间的区别real[K]
),也许对 Stan 有更深入的了解。