squareform
做这一切。阅读文档并进行实验。它在两个方向都有效。如果你给它一个矩阵,它会返回上三角值(压缩形式)。如果你给它这些值,它会返回矩阵。
In [668]: M
Out[668]:
array([[ 0. , 0.1, 0.5, 0.2],
[ 0.1, 0. , 2. , 0.3],
[ 0.5, 2. , 0. , 0.2],
[ 0.2, 0.3, 0.2, 0. ]])
In [669]: spatial.distance.squareform(M)
Out[669]: array([ 0.1, 0.5, 0.2, 2. , 0.3, 0.2])
In [670]: v=spatial.distance.squareform(M)
In [671]: v
Out[671]: array([ 0.1, 0.5, 0.2, 2. , 0.3, 0.2])
In [672]: spatial.distance.squareform(v)
Out[672]:
array([[ 0. , 0.1, 0.5, 0.2],
[ 0.1, 0. , 2. , 0.3],
[ 0.5, 2. , 0. , 0.2],
[ 0.2, 0.3, 0.2, 0. ]])
您还可以指定一个force
和checks
参数,但没有这些参数,它只是按形状。
指标可以来自triu
In [677]: np.triu_indices(4,1)
Out[677]:
(array([0, 0, 0, 1, 1, 2], dtype=int32),
array([1, 2, 3, 2, 3, 3], dtype=int32))
In [680]: np.vstack((np.triu_indices(4,1),v)).T
Out[680]:
array([[ 0. , 1. , 0.1],
[ 0. , 2. , 0.5],
[ 0. , 3. , 0.2],
[ 1. , 2. , 2. ],
[ 1. , 3. , 0.3],
[ 2. , 3. , 0.2]])
只是为了检查,我们可以用这些值填充一个 4x4 矩阵
In [686]: A=np.vstack((np.triu_indices(4,1),v)).T
In [687]: MM = np.zeros((4,4))
In [688]: MM[A[:,0].astype(int),A[:,1].astype(int)]=A[:,2]
In [689]: MM
Out[689]:
array([[ 0. , 0.1, 0.5, 0.2],
[ 0. , 0. , 2. , 0.3],
[ 0. , 0. , 0. , 0.2],
[ 0. , 0. , 0. , 0. ]])
这些triu
索引还可以从以下位置获取值M
:
In [693]: I,J = np.triu_indices(4,1)
In [694]: M[I,J]
Out[694]: array([ 0.1, 0.5, 0.2, 2. , 0.3, 0.2])
squareform
使用编译后的代码,spatial.distance._distance_wrap
所以我希望它对于大型数组来说会非常快。唯一的问题是它只返回压缩形式的值,而不是索引。但是给定形状,指数总是可以计算出来的。它们不需要与值一起存储。