0

嗨,我想将训练/测试拆分与交叉验证结合起来,并在 auc 中获得结果。

我的第一种方法我明白了,但很准确。

# split data into train+validation set and test set
X_trainval, X_test, y_trainval, y_test = train_test_split(dataset.data, dataset.target)
# split train+validation set into training and validation sets
X_train, X_valid, y_train, y_valid = train_test_split(X_trainval, y_trainval)
# train on classifier
clf.fit(X_train, y_train)
# evaluate the classifier on the test set
score = svm.score(X_valid, y_valid)
# combined training & validation set and evaluate it on the test set
clf.fit(X_trainval, y_trainval)
test_score = svm.score(X_test, y_test)

而且我找不到如何申请 roc_auc,请帮忙。

4

2 回答 2

0

使用 scikit-learn 你可以:

import numpy as np
from sklearn import metrics
y = np.array([1, 1, 2, 2])
scores = np.array([0.1, 0.4, 0.35, 0.8])
fpr, tpr, thresholds = metrics.roc_curve(y, scores, pos_label=2)

现在我们得到:

print(fpr)

数组([ 0. , 0.5, 0.5, 1. ])

print(tpr)

数组([ 0.5, 0.5, 1. , 1. ])

print(thresholds)

数组([ 0.8 , 0.4 , 0.35, 0.1 ])

于 2017-01-23T19:50:34.023 回答
0

在您的代码中,在训练您的分类器之后,通过以下方式获得预测:

y_preds = clf.predict(X_test)

然后用它来计算auc值:

from sklearn.metrics import roc_curve, auc

fpr, tpr, thresholds = roc_curve(y, y_preds, pos_label=1)
auc_roc = auc(fpr, tpr)
于 2019-05-17T15:03:01.147 回答