我想使用以下 python 代码(用于 pycaffe)生成一个类似于 U-Net 的深度学习架构:
from caffe import layers as L
from caffe import params as P
import caffe
from caffe.coord_map import crop
from PythonDataLayer import PythonDataLayer
# Some macro functions
def max_pool(bottom):
return L.Pooling(bottom, kernel_size=2, stride=2, pool=P.Pooling.MAX)
def macro_deconv(bottom, _num_output , _kernel_size, _stride):
deconv = L.Deconvolution(bottom,
convolution_param=dict(num_output=_num_output,kernel_size=_kernel_size, stride=_stride),
param=[dict(lr_mult=1,decay_mult=1)]
)
return deconv, L.ReLU(deconv, in_place=True)
def conv(bottom, _num_output, _kernel_size):
c = L.Convolution(bottom,
num_output=_num_output,
kernel_size=_kernel_size,
pad=0, weight_filler=dict(type='xavier'),
param=[{'lr_mult':1},{'lr_mult':0.1}],
bias_filler=dict(type='constant', value=0))
return c, L.ReLU(c, in_place=True)
def crop_merge(bottom_down, bottom_up):
c = crop(bottom_down, bottom_up)
m = L.Concat(bottom_up, c)
return c,m
def unet():
net = caffe.NetSpec()
pydata_params = dict()
pydata_params['image_file_list'] = '/home/xx/workspace/TRAIN_DATA_RAW.txt'
pydata_params['label_file_list'] = '/home/xx/workspace/TRAIN_LABEL_RAW.txt'
net.data, net.label = L.Python(module='PythonDataLayer', layer='PythonDataLayer', ntop=2, param_str=str(pydata_params))
# Level 1 down
net.down_conv1a, net.down_relu1a = conv(net.data, 24, 3)
net.pool1 = max_pool(net.down_relu1a)
# Level 2 down
net.down_conv2a, net.down_relu2a = conv(net.pool1, 32, 3)
net.down_conv2b, net.down_relu2b = conv(net.down_relu2a, 32, 3)
net.pool2 = max_pool(net.down_relu2b)
# Level 3 down
net.down_conv3a, net.down_relu3a = conv(net.pool2, 32, 3)
net.down_conv3b, net.down_relu3b = conv(net.down_relu3a, 32, 3)
net.pool3 = max_pool(net.down_relu3b)
#Bottom level
net.conv4a, net.relu4a = conv(net.pool3, 32, 3)
net.conv4b, net.relu4b = conv(net.relu4a, 32, 3)
# Level 3 up
net.up_deconv4, net.up_relu3a = macro_deconv(net.relu4b, 32, 2, 2)
net.up_crop3, net.up_merge3 = crop_merge(net.down_relu3b, net.up_relu3a)
net.up_conv3a, net.up_relu3b = conv(net.up_merge3, 32, 3)
net.up_conv3b, net.up_relu3c = conv(net.up_relu3b, 32, 3)
# Level 2 up
net.up_deconv3, net.up_relu2a = macro_deconv(net.up_relu3c, 32, 2, 2)
net.up_crop2, net.up_merge2 = crop_merge(net.down_relu2b, net.up_relu2a)
net.up_conv2a, net.up_relu2b = conv(net.up_merge2, 32, 3)
net.up_conv2b, net.up_relu2c = conv(net.up_relu2b, 32, 3)
# Level 1 up
net.up_deconv2, net.up_relu1a = macro_deconv(net.up_relu2c, 32, 2, 2)
net.up_crop1, net.up_merge1 = crop_merge(net.down_relu1a, net.up_relu1a)
net.up_conv1a, net.up_relu1b = conv(net.up_merge1, 32, 3)
net.up_conv1b, net.up_relu1c = conv(net.up_relu1b, 32, 3)
# Final layer
net.last = L.Convolution(net.up_relu1c,
num_output=2,
kernel_size=1,
pad=0,
weight_filler=dict(type='xavier'),
param=[{'lr_mult':1},{'lr_mult':0.1}],
bias_filler=dict(type='constant', value=0))
net.loss = L.EuclideanLoss(net.fullyconv, net.label)
return net.to_proto()
print unet()
执行时返回以下错误消息:
xx@pc-01:~/workspace$ python UNET.py
Traceback (most recent call last):
File "UNET.py", line 109, in <module>
print unet()
File "UNET.py", line 79, in unet
net.up_crop2, net.up_merge2 = crop_merge(net.down_relu2b, net.up_relu2a)
File "UNET.py", line 34, in crop_merge
c = crop(bottom_down, bottom_up)
File "/usr/local/caffe/python/caffe/coord_map.py", line 178, in crop
ax, a, b = coord_map_from_to(top_from, top_to)
File "/usr/local/caffe/python/caffe/coord_map.py", line 168, in coord_map_from _to
raise RuntimeError('Could not compute map between tops; are they '
RuntimeError: Could not compute map between tops; are they connected by spatial layers?
我不知道问题是什么。如果我减少层使得只有一个反卷积+裁剪+合并步骤,则生成网络描述字符串没有问题。