0

原始图像 我正在尝试检测此图像中连接边界的集群。我需要找到这些边缘的长度以及各个集群的回转半径。我正在使用 opencv 2.4.13。我使用以下代码使用轮廓检测​​质量簇。

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);

/// Function header
void thresh_callback(int, void* );

/** @function main */
int main( int argc, char** argv )
{
  /// Load source image and convert it to gray
  src = imread( argv[1], 1 );

  /// Convert image to gray and blur it
  cvtColor( src, src_gray, CV_BGR2GRAY );
  blur( src_gray, src_gray, Size(3,3) );

  /// Create Window
  char* source_window = "Source";
  namedWindow( source_window, CV_WINDOW_AUTOSIZE );
  imshow( source_window, src );

  createTrackbar( " Canny thresh:", "Source", &thresh, max_thresh, thresh_callback );
  thresh_callback( 0, 0 );

  waitKey(0);
  return(0);
}

/** @function thresh_callback */
void thresh_callback(int, void* )
{
  Mat canny_output;
  vector<vector<Point> > contours;
  vector<Vec4i> hierarchy;

  /// Detect edges using canny
  Canny( src_gray, canny_output, thresh, thresh*2, 3 );
  /// Find contours
  findContours( canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) );

  /// Get the moments
  vector<Moments> mu(contours.size() );
  for( int i = 0; i < contours.size(); i++ )
     { mu[i] = moments( contours[i], false ); }

  ///  Get the mass centers:
  vector<Point2f> mc( contours.size() );
  for( int i = 0; i < contours.size(); i++ )
     { mc[i] = Point2f( mu[i].m10/mu[i].m00 , mu[i].m01/mu[i].m00 ); }

  /// Draw contours
  Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );
  Mat drawing2 = Mat::zeros( canny_output.size(), CV_8UC3 );
  for( int i = 0; i< contours.size(); i++ )
     {if(arcLength( contours[i], true )>900)
       {Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
       drawContours( drawing, contours, i, color, 2, 8, hierarchy, 0, Point() );
       circle( drawing, mc[i], 4, color, -1, 8, 0 );}
     }
     int length=0;
     int j=0;
   for( int i = 0; i< contours.size(); i++ )
   {
    if(arcLength( contours[i], true )>length)
    {
        length=arcLength( contours[i], true );
        j=i;
    }
   } 
   Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
       drawContours( drawing2, contours, j, color, 2, 8, hierarchy, 0, Point() );
       circle( drawing2, mc[j], 4, color, -1, 8, 0 ); 

  /// Show in a window
  namedWindow( "Contours", CV_WINDOW_AUTOSIZE );
  imshow( "Contours", drawing );
  namedWindow( "Contours2", CV_WINDOW_AUTOSIZE );
  imshow( "Contours_max", drawing2 );

  /// Calculate the area with the moments 00 and compare with the result of the OpenCV function
  printf("\t Info: Area and Contour Length \n");
  for( int i = 0; i< contours.size(); i++ )
     {

        if(arcLength( contours[i], true )>900)
       {printf(" * Contour[%d] - Area (M_00) = %.2f - Area OpenCV: %.2f - Length: %.2f \n", i, mu[i].m00, contourArea(contours[i]), arcLength( contours[i], true ) );
       Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
       drawContours( drawing, contours, i, color, 2, 8, hierarchy, 0, Point() );
       circle( drawing, mc[i], 4, color, -1, 8, 0 );}
     }
}

问题是公共共享边的轮廓变得不同,逻辑上它们应该属于同一个集群。我给出的以下轮廓图像。 在一定长度以上提取的轮廓

我们可以看到许多具有相同共享边的轮廓被分别视为不同的轮廓。我希望它们成为相同边界集群的一部分。还建议我如何检测边界的长度和回转半径。请帮忙。

4

1 回答 1

0

我对你的问题感到非常困惑(会在评论中要求澄清,但我太菜鸟无法评论)

根据我所看到和理解的,我唯一的建议是您可能不想使用精明的过滤器。需要明确的是,您的原始图像已经有边缘......运行一个精明的过滤器会为您提供我认为您不想要的“双边缘”,但同样,我什至不确定您想要实现什么。

于 2016-12-17T17:25:13.353 回答