对于具有通常四个点 a、b、c 和 d 的三次贝塞尔曲线,
对于给定的值 t,
在那一点上如何最优雅地找到切线?
曲线的切线就是它的导数。Michal 使用的参数方程:
P(t) = (1 - t)^3 * P0 + 3t(1-t)^2 * P1 + 3t^2 (1-t) * P2 + t^3 * P3
应该有一个导数
dP(t) / dt = -3(1-t)^2 * P0 + 3(1-t)^2 * P1 - 6t(1-t) * P1 - 3t^2 * P2 + 6t(1-t) * P2 + 3t^2 * P3
顺便说一句,在您之前的问题中,这似乎是错误的。我相信您在那里使用的是二次贝塞尔曲线的斜率,而不是三次。
从那里开始,实现一个执行此计算的 C 函数应该是微不足道的,就像 Michal 已经为曲线本身提供的那样。
这是完全测试过的代码,可以复制和粘贴:
它沿着曲线绘制近似点,并绘制切线。
bezierInterpolation
找到点
bezierTangent
找到切线
下面提供了两个版本bezierInterpolation
:
bezierInterpolation
完美运行。
altBezierInterpolation
完全一样,但是它是以扩展,清晰,解释性的方式编写的。它使算术更容易理解。
使用这两个例程中的任何一个:结果是相同的。
在这两种情况下,使用bezierTangent
来查找切线。(注意:这里是 Michal 的精彩代码库。)
drawRect:
还包括如何使用 with 的完整示例。
// MBBezierView.m original BY MICHAL stackoverflow #4058979
#import "MBBezierView.h"
CGFloat bezierInterpolation(
CGFloat t, CGFloat a, CGFloat b, CGFloat c, CGFloat d) {
// see also below for another way to do this, that follows the 'coefficients'
// idea, and is a little clearer
CGFloat t2 = t * t;
CGFloat t3 = t2 * t;
return a + (-a * 3 + t * (3 * a - a * t)) * t
+ (3 * b + t * (-6 * b + b * 3 * t)) * t
+ (c * 3 - c * 3 * t) * t2
+ d * t3;
}
CGFloat altBezierInterpolation(
CGFloat t, CGFloat a, CGFloat b, CGFloat c, CGFloat d)
{
// here's an alternative to Michal's bezierInterpolation above.
// the result is absolutely identical.
// of course, you could calculate the four 'coefficients' only once for
// both this and the slope calculation, if desired.
CGFloat C1 = ( d - (3.0 * c) + (3.0 * b) - a );
CGFloat C2 = ( (3.0 * c) - (6.0 * b) + (3.0 * a) );
CGFloat C3 = ( (3.0 * b) - (3.0 * a) );
CGFloat C4 = ( a );
// it's now easy to calculate the point, using those coefficients:
return ( C1*t*t*t + C2*t*t + C3*t + C4 );
}
CGFloat bezierTangent(CGFloat t, CGFloat a, CGFloat b, CGFloat c, CGFloat d)
{
// note that abcd are aka x0 x1 x2 x3
/* the four coefficients ..
A = x3 - 3 * x2 + 3 * x1 - x0
B = 3 * x2 - 6 * x1 + 3 * x0
C = 3 * x1 - 3 * x0
D = x0
and then...
Vx = 3At2 + 2Bt + C */
// first calcuate what are usually know as the coeffients,
// they are trivial based on the four control points:
CGFloat C1 = ( d - (3.0 * c) + (3.0 * b) - a );
CGFloat C2 = ( (3.0 * c) - (6.0 * b) + (3.0 * a) );
CGFloat C3 = ( (3.0 * b) - (3.0 * a) );
CGFloat C4 = ( a ); // (not needed for this calculation)
// finally it is easy to calculate the slope element,
// using those coefficients:
return ( ( 3.0 * C1 * t* t ) + ( 2.0 * C2 * t ) + C3 );
// note that this routine works for both the x and y side;
// simply run this routine twice, once for x once for y
// note that there are sometimes said to be 8 (not 4) coefficients,
// these are simply the four for x and four for y,
// calculated as above in each case.
}
@implementation MBBezierView
- (void)drawRect:(CGRect)rect {
CGPoint p1, p2, p3, p4;
p1 = CGPointMake(30, rect.size.height * 0.33);
p2 = CGPointMake(CGRectGetMidX(rect), CGRectGetMinY(rect));
p3 = CGPointMake(CGRectGetMidX(rect), CGRectGetMaxY(rect));
p4 = CGPointMake(-30 + CGRectGetMaxX(rect), rect.size.height * 0.66);
[[UIColor blackColor] set];
[[UIBezierPath bezierPathWithRect:rect] fill];
[[UIColor redColor] setStroke];
UIBezierPath *bezierPath = [[[UIBezierPath alloc] init] autorelease];
[bezierPath moveToPoint:p1];
[bezierPath addCurveToPoint:p4 controlPoint1:p2 controlPoint2:p3];
[bezierPath stroke];
[[UIColor brownColor] setStroke];
// now mark in points along the bezier!
for (CGFloat t = 0.0; t <= 1.00001; t += 0.05) {
[[UIColor brownColor] setStroke];
CGPoint point = CGPointMake(
bezierInterpolation(t, p1.x, p2.x, p3.x, p4.x),
bezierInterpolation(t, p1.y, p2.y, p3.y, p4.y));
// there, use either bezierInterpolation or altBezierInterpolation,
// identical results for the position
// just draw that point to indicate it...
UIBezierPath *pointPath =
[UIBezierPath bezierPathWithArcCenter:point
radius:5 startAngle:0 endAngle:2*M_PI clockwise:YES];
[pointPath stroke];
// now find the tangent if someone on stackoverflow knows how
CGPoint vel = CGPointMake(
bezierTangent(t, p1.x, p2.x, p3.x, p4.x),
bezierTangent(t, p1.y, p2.y, p3.y, p4.y));
// the following code simply draws an indication of the tangent
CGPoint demo = CGPointMake( point.x + (vel.x*0.3),
point.y + (vel.y*0.33) );
// (the only reason for the .3 is to make the pointers shorter)
[[UIColor whiteColor] setStroke];
UIBezierPath *vp = [UIBezierPath bezierPath];
[vp moveToPoint:point];
[vp addLineToPoint:demo];
[vp stroke];
}
}
@end
to draw that class...
MBBezierView *mm = [[MBBezierView alloc]
initWithFrame:CGRectMake(400,20, 600,700)];
[mm setNeedsDisplay];
[self addSubview:mm];
这是计算近似等距点的两个例程,以及沿贝塞尔三次的切线。
为清晰和可靠起见,这些例程以最简单、最具解释性的方式编写。
CGFloat bezierPoint(CGFloat t, CGFloat a, CGFloat b, CGFloat c, CGFloat d)
{
CGFloat C1 = ( d - (3.0 * c) + (3.0 * b) - a );
CGFloat C2 = ( (3.0 * c) - (6.0 * b) + (3.0 * a) );
CGFloat C3 = ( (3.0 * b) - (3.0 * a) );
CGFloat C4 = ( a );
return ( C1*t*t*t + C2*t*t + C3*t + C4 );
}
CGFloat bezierTangent(CGFloat t, CGFloat a, CGFloat b, CGFloat c, CGFloat d)
{
CGFloat C1 = ( d - (3.0 * c) + (3.0 * b) - a );
CGFloat C2 = ( (3.0 * c) - (6.0 * b) + (3.0 * a) );
CGFloat C3 = ( (3.0 * b) - (3.0 * a) );
CGFloat C4 = ( a );
return ( ( 3.0 * C1 * t* t ) + ( 2.0 * C2 * t ) + C3 );
}
四个预先计算的值 C1 C2 C3 C4 有时称为贝塞尔系数。(回想一下,abcd 通常被称为四个控制点。)
当然,t 从 0 到 1,例如每 0.05。
只需为 X 调用一次这些例程,然后为 Y 单独调用一次。
希望它可以帮助某人!
重要事实:
(1) 一个绝对的事实是:不幸的是,Apple 提供的绝对没有方法可以从 UIBezierPath 中提取点。截至 2019 年为真。
(2) 不要忘记沿着UIBezierPath制作动画就像馅饼一样简单。谷歌很多例子。
(3) 许多人问,“CGPathApply 不能用来从 UIBezierPath 中提取点吗?” 不,CGPathApply 完全不相关:它只是为您提供“制作任何路径的说明”列表(因此,“从这里开始”,“画一条直线到该点”等)名称令人困惑,但 CGPathApply与贝塞尔路径完全无关。
对于游戏程序员 - 正如@Engineer 指出的那样,您可能很想要切线的法线,幸运的是苹果内置了向量数学:
https://developer.apple.com/documentation/accelerate/simd/working_with_vectors
https://developer.apple.com/documentation/simd/2896658-simd_normalize
这是我的 Swift 实现。
我尽我所能通过消除所有冗余的数学运算来优化速度。即最少调用数学运算。并使用尽可能少的乘法(这比求和要昂贵得多)。
有 0 次乘法来创建贝塞尔曲线。然后 3 次乘法得到一个贝塞尔曲线。和 2 次乘法得到贝塞尔曲线的切线。
struct CubicBezier {
private typealias Me = CubicBezier
typealias Vector = CGVector
typealias Point = CGPoint
typealias Num = CGFloat
typealias Coeficients = (C: Num, S: Num, M: Num, L: Num)
let xCoeficients: Coeficients
let yCoeficients: Coeficients
static func coeficientsOfCurve(from c0: Num, through c1: Num, andThrough c2: Num, to c3: Num) -> Coeficients
{
let _3c0 = c0 + c0 + c0
let _3c1 = c1 + c1 + c1
let _3c2 = c2 + c2 + c2
let _6c1 = _3c1 + _3c1
let C = c3 - _3c2 + _3c1 - c0
let S = _3c2 - _6c1 + _3c0
let M = _3c1 - _3c0
let L = c0
return (C, S, M, L)
}
static func xOrYofCurveWith(coeficients coefs: Coeficients, at t: Num) -> Num
{
let (C, S, M, L) = coefs
return ((C * t + S) * t + M) * t + L
}
static func xOrYofTangentToCurveWith(coeficients coefs: Coeficients, at t: Num) -> Num
{
let (C, S, M, _) = coefs
return ((C + C + C) * t + S + S) * t + M
}
init(from start: Point, through c1: Point, andThrough c2: Point, to end: Point)
{
xCoeficients = Me.coeficientsOfCurve(from: start.x, through: c1.x, andThrough: c2.x, to: end.x)
yCoeficients = Me.coeficientsOfCurve(from: start.y, through: c1.y, andThrough: c2.y, to: end.y)
}
func x(at t: Num) -> Num {
return Me.xOrYofCurveWith(coeficients: xCoeficients, at: t)
}
func y(at t: Num) -> Num {
return Me.xOrYofCurveWith(coeficients: yCoeficients, at: t)
}
func dx(at t: Num) -> Num {
return Me.xOrYofTangentToCurveWith(coeficients: xCoeficients, at: t)
}
func dy(at t: Num) -> Num {
return Me.xOrYofTangentToCurveWith(coeficients: yCoeficients, at: t)
}
func point(at t: Num) -> Point {
return .init(x: x(at: t), y: y(at: t))
}
func tangent(at t: Num) -> Vector {
return .init(dx: dx(at: t), dy: dy(at: t))
}
}
像这样使用:
let bezier = CubicBezier.init(from: .zero, through: .zero, andThrough: .zero, to: .zero)
let point02 = bezier.point(at: 0.2)
let point07 = bezier.point(at: 0.7)
let tangent01 = bezier.tangent(at: 0.1)
let tangent05 = bezier.tangent(at: 0.5)
直到我意识到对于参数方程,(dy/dt)/(dx/dt) = dy/dx