416

有没有一种简单的方法可以通过列表理解来展平可迭代列表,或者如果失败了,你们都认为什么是展平这样的浅表、平衡性能和可读性的最佳方法?

我试图用嵌套列表理解来展平这样的列表,如下所示:

[image for image in menuitem for menuitem in list_of_menuitems]

但我在NameError那里遇到了各种各样的麻烦,因为name 'menuitem' is not defined. 在谷歌搜索并在 Stack Overflow 上环顾四周后,我得到了预期的结果,并附有以下reduce声明:

reduce(list.__add__, map(lambda x: list(x), list_of_menuitems))

但是这个方法相当不可读,因为我需要那个list(x)调用,因为 x 是一个 DjangoQuerySet对象。

结论

感谢所有为这个问题做出贡献的人。这里是我学到的总结。如果其他人想要添加或更正这些观察结果,我也将其设为社区 wiki。

我原来的 reduce 语句是多余的,最好这样写:

>>> reduce(list.__add__, (list(mi) for mi in list_of_menuitems))

这是嵌套列表理解的正确语法(Brilliant summary dF!):

>>> [image for mi in list_of_menuitems for image in mi]

但是这些方法都没有使用效率高itertools.chain

>>> from itertools import chain
>>> list(chain(*list_of_menuitems))

正如@cdleary 所指出的,使用这样的方式来避免 * 运算符魔法可能是更好的风格chain.from_iterable

>>> chain = itertools.chain.from_iterable([[1,2],[3],[5,89],[],[6]])
>>> print(list(chain))
>>> [1, 2, 3, 5, 89, 6]
4

23 回答 23

323

如果您只是想迭代数据结构的扁平版本并且不需要可索引的序列,请考虑itertools.chain 和 company

>>> list_of_menuitems = [['image00', 'image01'], ['image10'], []]
>>> import itertools
>>> chain = itertools.chain(*list_of_menuitems)
>>> print(list(chain))
['image00', 'image01', 'image10']

它将适用于任何可迭代的东西,其中应包括 Django 的 iterable QuerySets,您似乎在问题中使用了它。

编辑:无论如何,这可能与 reduce 一样好,因为 reduce 将项目复制到正在扩展的列表中的开销相同。chain如果你在最后运行,只会产生这个(相同的)开销list(chain)

元编辑:实际上,它的开销比问题提出的解决方案要少,因为当您使用临时列表扩展原始列表时,您会丢弃创建的临时列表。

编辑:正如JF Sebastian 所说, itertools.chain.from_iterable避免拆包,您应该使用它来避免*魔法,但timeit 应用程序显示的性能差异可以忽略不计。

于 2009-01-02T06:49:50.437 回答
290

你几乎拥有它!进行嵌套列表推导的方法是将for语句按照与常规嵌套语句中相同的顺序放置for

因此,这

for inner_list in outer_list:
    for item in inner_list:
        ...

对应于

[... for inner_list in outer_list for item in inner_list]

所以你要

[image for menuitem in list_of_menuitems for image in menuitem]
于 2009-01-02T08:30:21.937 回答
130

@S.Lott:你启发了我编写一个 timeit 应用程序。

我认为它也会根据分区数量(容器列表中的迭代器数量)而有所不同——您的评论没有提到三十个项目中有多少个分区。该图在每次运行中都会展平一千个项目,分区数量不同。项目在分区之间均匀分布。

展平比较

代码(Python 2.6):

#!/usr/bin/env python2.6

"""Usage: %prog item_count"""

from __future__ import print_function

import collections
import itertools
import operator
from timeit import Timer
import sys

import matplotlib.pyplot as pyplot

def itertools_flatten(iter_lst):
    return list(itertools.chain(*iter_lst))

def itertools_iterable_flatten(iter_iter):
    return list(itertools.chain.from_iterable(iter_iter))

def reduce_flatten(iter_lst):
    return reduce(operator.add, map(list, iter_lst))

def reduce_lambda_flatten(iter_lst):
    return reduce(operator.add, map(lambda x: list(x), [i for i in iter_lst]))

def comprehension_flatten(iter_lst):
    return list(item for iter_ in iter_lst for item in iter_)

METHODS = ['itertools', 'itertools_iterable', 'reduce', 'reduce_lambda',
           'comprehension']

def _time_test_assert(iter_lst):
    """Make sure all methods produce an equivalent value.
    :raise AssertionError: On any non-equivalent value."""
    callables = (globals()[method + '_flatten'] for method in METHODS)
    results = [callable(iter_lst) for callable in callables]
    if not all(result == results[0] for result in results[1:]):
        raise AssertionError

def time_test(partition_count, item_count_per_partition, test_count=10000):
    """Run flatten methods on a list of :param:`partition_count` iterables.
    Normalize results over :param:`test_count` runs.
    :return: Mapping from method to (normalized) microseconds per pass.
    """
    iter_lst = [[dict()] * item_count_per_partition] * partition_count
    print('Partition count:    ', partition_count)
    print('Items per partition:', item_count_per_partition)
    _time_test_assert(iter_lst)
    test_str = 'flatten(%r)' % iter_lst
    result_by_method = {}
    for method in METHODS:
        setup_str = 'from test import %s_flatten as flatten' % method
        t = Timer(test_str, setup_str)
        per_pass = test_count * t.timeit(number=test_count) / test_count
        print('%20s: %.2f usec/pass' % (method, per_pass))
        result_by_method[method] = per_pass
    return result_by_method

if __name__ == '__main__':
    if len(sys.argv) != 2:
        raise ValueError('Need a number of items to flatten')
    item_count = int(sys.argv[1])
    partition_counts = []
    pass_times_by_method = collections.defaultdict(list)
    for partition_count in xrange(1, item_count):
        if item_count % partition_count != 0:
            continue
        items_per_partition = item_count / partition_count
        result_by_method = time_test(partition_count, items_per_partition)
        partition_counts.append(partition_count)
        for method, result in result_by_method.iteritems():
            pass_times_by_method[method].append(result)
    for method, pass_times in pass_times_by_method.iteritems():
        pyplot.plot(partition_counts, pass_times, label=method)
    pyplot.legend()
    pyplot.title('Flattening Comparison for %d Items' % item_count)
    pyplot.xlabel('Number of Partitions')
    pyplot.ylabel('Microseconds')
    pyplot.show()

编辑:决定使它成为社区维基。

注意: METHODS可能应该与装饰器一起积累,但我认为人们这样阅读会更容易。

于 2009-01-02T23:16:43.820 回答
53

sum(list_of_lists, [])会把它弄平。

l = [['image00', 'image01'], ['image10'], []]
print sum(l,[]) # prints ['image00', 'image01', 'image10']
于 2014-02-27T19:03:12.740 回答
41

该解决方案适用于任意嵌套深度 - 不仅仅是“列表列表”深度,其他一些(全部?)解决方案仅限于:

def flatten(x):
    result = []
    for el in x:
        if hasattr(el, "__iter__") and not isinstance(el, basestring):
            result.extend(flatten(el))
        else:
            result.append(el)
    return result

这是允许任意深度嵌套的递归 - 当然,直到你达到最大递归深度......

于 2009-01-02T13:49:57.287 回答
25

在 Python 2.6 中,使用chain.from_iterable()

>>> from itertools import chain
>>> list(chain.from_iterable(mi.image_set.all() for mi in h.get_image_menu()))

它避免了创建中间列表。

于 2009-01-04T19:37:56.397 回答
24

性能结果。修改。

import itertools
def itertools_flatten( aList ):
    return list( itertools.chain(*aList) )

from operator import add
def reduce_flatten1( aList ):
    return reduce(add, map(lambda x: list(x), [mi for mi in aList]))

def reduce_flatten2( aList ):
    return reduce(list.__add__, map(list, aList))

def comprehension_flatten( aList ):
    return list(y for x in aList for y in x)

我将 30 个项目的 2 级列表展平了 1000 次

itertools_flatten     0.00554
comprehension_flatten 0.00815
reduce_flatten2       0.01103
reduce_flatten1       0.01404

减少总是一个糟糕的选择。

于 2009-01-02T12:13:08.810 回答
16

似乎与operator.add! 当您将两个列表相加时,正确的术语是concat, not add。operator.concat是你需要使用的。

如果您正在考虑功能,它就像这样简单::

>>> list2d = ((1,2,3),(4,5,6), (7,), (8,9))
>>> reduce(operator.concat, list2d)
(1, 2, 3, 4, 5, 6, 7, 8, 9)

你看到 reduce 尊重序列类型,所以当你提供一个元组时,你会得到一个元组。让我们尝试一个列表::

>>> list2d = [[1,2,3],[4,5,6], [7], [8,9]]
>>> reduce(operator.concat, list2d)
[1, 2, 3, 4, 5, 6, 7, 8, 9]

啊哈,你拿回了一份清单。

性能怎么样::

>>> list2d = [[1,2,3],[4,5,6], [7], [8,9]]
>>> %timeit list(itertools.chain.from_iterable(list2d))
1000000 loops, best of 3: 1.36 µs per loop

from_iterable 非常快!但是用 concat 来减少是没有可比性的。

>>> list2d = ((1,2,3),(4,5,6), (7,), (8,9))
>>> %timeit reduce(operator.concat, list2d)
1000000 loops, best of 3: 492 ns per loop
于 2014-10-06T21:54:10.520 回答
8

在我的脑海中,您可以消除 lambda:

reduce(list.__add__, map(list, [mi.image_set.all() for mi in list_of_menuitems]))

甚至消除地图,因为您已经有了一个列表组合:

reduce(list.__add__, [list(mi.image_set.all()) for mi in list_of_menuitems])

您也可以将其表示为列表的总和:

sum([list(mi.image_set.all()) for mi in list_of_menuitems], [])
于 2009-01-02T05:55:01.423 回答
8

这是使用列表推导的正确解决方案(它们在问题中落后):

>>> join = lambda it: (y for x in it for y in x)
>>> list(join([[1,2],[3,4,5],[]]))
[1, 2, 3, 4, 5]

在你的情况下,它会是

[image for menuitem in list_of_menuitems for image in menuitem.image_set.all()]

或者你可以使用join并说

join(menuitem.image_set.all() for menuitem in list_of_menuitems)

for在任何一种情况下,问题都是循环的嵌套。

于 2009-01-02T07:33:49.680 回答
4

这个版本是一个生成器。如果你想要一个列表,可以调整它。

def list_or_tuple(l):
    return isinstance(l,(list,tuple))
## predicate will select the container  to be flattened
## write your own as required
## this one flattens every list/tuple


def flatten(seq,predicate=list_or_tuple):        
    ## recursive generator 
    for i in seq:
        if predicate(seq):
            for j in flatten(i):
                yield j
        else:
            yield i

您可以添加一个谓词,如果想要展平满足条件的那些

取自 python 食谱

于 2013-12-23T09:33:20.223 回答
4

这是一个适用于多个级别列表的版本,使用collectons.Iterable

import collections

def flatten(o, flatten_condition=lambda i: isinstance(i,
               collections.Iterable) and not isinstance(i, str)):
    result = []
    for i in o:
        if flatten_condition(i):
            result.extend(flatten(i, flatten_condition))
        else:
            result.append(i)
    return result
于 2014-12-15T06:03:05.087 回答
4

如果您必须使用不可迭代的元素或深度超过 2 的更复杂的列表来展开更复杂的列表,您可以使用以下函数:

def flat_list(list_to_flat):
    if not isinstance(list_to_flat, list):
        yield list_to_flat
    else:
        for item in list_to_flat:
            yield from flat_list(item)

它将返回一个生成器对象,您可以将其转换为带有list()函数的列表。请注意,yield from从 python3.3 开始可以使用语法,但您可以改用显式迭代。
例子:

>>> a = [1, [2, 3], [1, [2, 3, [1, [2, 3]]]]]
>>> print(list(flat_list(a)))
[1, 2, 3, 1, 2, 3, 1, 2, 3]
于 2015-04-12T01:05:48.887 回答
3

你试过扁平化吗?来自matplotlib.cbook.flatten(seq, scalarp=)

l=[[1,2,3],[4,5,6], [7], [8,9]]*33

run("list(flatten(l))")
         3732 function calls (3303 primitive calls) in 0.007 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.007    0.007 <string>:1(<module>)
      429    0.001    0.000    0.001    0.000 cbook.py:475(iterable)
      429    0.002    0.000    0.003    0.000 cbook.py:484(is_string_like)
      429    0.002    0.000    0.006    0.000 cbook.py:565(is_scalar_or_string)
  727/298    0.001    0.000    0.007    0.000 cbook.py:605(flatten)
      429    0.000    0.000    0.001    0.000 core.py:5641(isMaskedArray)
      858    0.001    0.000    0.001    0.000 {isinstance}
      429    0.000    0.000    0.000    0.000 {iter}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



l=[[1,2,3],[4,5,6], [7], [8,9]]*66

run("list(flatten(l))")
         7461 function calls (6603 primitive calls) in 0.007 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.007    0.007 <string>:1(<module>)
      858    0.001    0.000    0.001    0.000 cbook.py:475(iterable)
      858    0.002    0.000    0.003    0.000 cbook.py:484(is_string_like)
      858    0.002    0.000    0.006    0.000 cbook.py:565(is_scalar_or_string)
 1453/595    0.001    0.000    0.007    0.000 cbook.py:605(flatten)
      858    0.000    0.000    0.001    0.000 core.py:5641(isMaskedArray)
     1716    0.001    0.000    0.001    0.000 {isinstance}
      858    0.000    0.000    0.000    0.000 {iter}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



l=[[1,2,3],[4,5,6], [7], [8,9]]*99

run("list(flatten(l))")
         11190 function calls (9903 primitive calls) in 0.010 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.010    0.010 <string>:1(<module>)
     1287    0.002    0.000    0.002    0.000 cbook.py:475(iterable)
     1287    0.003    0.000    0.004    0.000 cbook.py:484(is_string_like)
     1287    0.002    0.000    0.009    0.000 cbook.py:565(is_scalar_or_string)
 2179/892    0.001    0.000    0.010    0.000 cbook.py:605(flatten)
     1287    0.001    0.000    0.001    0.000 core.py:5641(isMaskedArray)
     2574    0.001    0.000    0.001    0.000 {isinstance}
     1287    0.000    0.000    0.000    0.000 {iter}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



l=[[1,2,3],[4,5,6], [7], [8,9]]*132

run("list(flatten(l))")
         14919 function calls (13203 primitive calls) in 0.013 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000    0.013    0.013 <string>:1(<module>)
     1716    0.002    0.000    0.002    0.000 cbook.py:475(iterable)
     1716    0.004    0.000    0.006    0.000 cbook.py:484(is_string_like)
     1716    0.003    0.000    0.011    0.000 cbook.py:565(is_scalar_or_string)
2905/1189    0.002    0.000    0.013    0.000 cbook.py:605(flatten)
     1716    0.001    0.000    0.001    0.000 core.py:5641(isMaskedArray)
     3432    0.001    0.000    0.001    0.000 {isinstance}
     1716    0.001    0.000    0.001    0.000 {iter}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler'

更新 这给了我另一个想法:

l=[[1,2,3],[4,5,6], [7], [8,9]]*33

run("flattenlist(l)")
         564 function calls (432 primitive calls) in 0.000 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    133/1    0.000    0.000    0.000    0.000 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.000    0.000    0.000    0.000 <string>:1(<module>)
      429    0.000    0.000    0.000    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



l=[[1,2,3],[4,5,6], [7], [8,9]]*66

run("flattenlist(l)")
         1125 function calls (861 primitive calls) in 0.001 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    265/1    0.001    0.000    0.001    0.001 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.000    0.000    0.001    0.001 <string>:1(<module>)
      858    0.000    0.000    0.000    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



l=[[1,2,3],[4,5,6], [7], [8,9]]*99

run("flattenlist(l)")
         1686 function calls (1290 primitive calls) in 0.001 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    397/1    0.001    0.000    0.001    0.001 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.000    0.000    0.001    0.001 <string>:1(<module>)
     1287    0.000    0.000    0.000    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



l=[[1,2,3],[4,5,6], [7], [8,9]]*132

run("flattenlist(l)")
         2247 function calls (1719 primitive calls) in 0.002 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
    529/1    0.001    0.000    0.002    0.002 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.000    0.000    0.002    0.002 <string>:1(<module>)
     1716    0.001    0.000    0.001    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



l=[[1,2,3],[4,5,6], [7], [8,9]]*1320

run("flattenlist(l)")
         22443 function calls (17163 primitive calls) in 0.016 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
   5281/1    0.011    0.000    0.016    0.016 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.000    0.000    0.016    0.016 <string>:1(<module>)
    17160    0.005    0.000    0.005    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

所以要测试当递归变得更深时它的有效性:有多深?

l=[[1,2,3],[4,5,6], [7], [8,9]]*1320

new=[l]*33

run("flattenlist(new)")
         740589 function calls (566316 primitive calls) in 0.418 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
 174274/1    0.281    0.000    0.417    0.417 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.001    0.001    0.418    0.418 <string>:1(<module>)
   566313    0.136    0.000    0.136    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



new=[l]*66

run("flattenlist(new)")
         1481175 function calls (1132629 primitive calls) in 0.809 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
 348547/1    0.542    0.000    0.807    0.807 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.002    0.002    0.809    0.809 <string>:1(<module>)
  1132626    0.266    0.000    0.266    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



new=[l]*99

run("flattenlist(new)")
         2221761 function calls (1698942 primitive calls) in 1.211 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
 522820/1    0.815    0.000    1.208    1.208 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.002    0.002    1.211    1.211 <string>:1(<module>)
  1698939    0.393    0.000    0.393    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



new=[l]*132

run("flattenlist(new)")
         2962347 function calls (2265255 primitive calls) in 1.630 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
 697093/1    1.091    0.000    1.627    1.627 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.003    0.003    1.630    1.630 <string>:1(<module>)
  2265252    0.536    0.000    0.536    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}



new=[l]*1320

run("flattenlist(new)")
         29623443 function calls (22652523 primitive calls) in 16.103 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
6970921/1   10.842    0.000   16.069   16.069 <ipython-input-55-39b139bad497>:4(flattenlist)
        1    0.034    0.034   16.103   16.103 <string>:1(<module>)
 22652520    5.227    0.000    5.227    0.000 {isinstance}
        1    0.000    0.000    0.000    0.000 {method 'disable' of '_lsprof.Profiler' objects}

我敢打赌“flattenlist”我将使用它而不是 matploblib 很长一段时间,除非我想要一个产量生成器和快速结果,因为 matploblib.cbook 中的“flatten”使用

这个,很快。

  • 这是代码

typ=(list,tuple)


def flattenlist(d):
    thelist = []
    for x in d:
        if not isinstance(x,typ):
            thelist += [x]
        else:
            thelist += flattenlist(x)
    return thelist
于 2013-12-05T12:54:01.770 回答
3

根据我的经验,扁平化列表的最有效方法是:

flat_list = []
map(flat_list.extend, list_of_list)

与其他建议方法的一些时间比较:

list_of_list = [range(10)]*1000
%timeit flat_list=[]; map(flat_list.extend, list_of_list)
#10000 loops, best of 3: 119 µs per loop
%timeit flat_list=list(itertools.chain.from_iterable(list_of_list))
#1000 loops, best of 3: 210 µs per loop
%timeit flat_list=[i for sublist in list_of_list for i in sublist]
#1000 loops, best of 3: 525 µs per loop
%timeit flat_list=reduce(list.__add__,list_of_list)
#100 loops, best of 3: 18.1 ms per loop

现在,在处理较长的子列表时,效率增益似乎更好:

list_of_list = [range(1000)]*10
%timeit flat_list=[]; map(flat_list.extend, list_of_list)
#10000 loops, best of 3: 60.7 µs per loop
%timeit flat_list=list(itertools.chain.from_iterable(list_of_list))
#10000 loops, best of 3: 176 µs per loop

此方法也适用于任何迭代对象:

class SquaredRange(object):
    def __init__(self, n): 
        self.range = range(n)
    def __iter__(self):
        for i in self.range: 
            yield i**2

list_of_list = [SquaredRange(5)]*3
flat_list = []
map(flat_list.extend, list_of_list)
print flat_list
#[0, 1, 4, 9, 16, 0, 1, 4, 9, 16, 0, 1, 4, 9, 16]
于 2014-01-20T15:19:35.770 回答
3
def is_iterable(item):
   return isinstance(item, list) or isinstance(item, tuple)


def flatten(items):
    for i in items:
        if is_iterable(item):
            for m in flatten(i):
                yield m
        else:
            yield i

测试:

print list(flatten2([1.0, 2, 'a', (4,), ((6,), (8,)), (((8,),(9,)), ((12,),(10)))]))
于 2016-04-05T13:28:16.377 回答
2

关于什么:

from operator import add
reduce(add, map(lambda x: list(x.image_set.all()), [mi for mi in list_of_menuitems]))

但是,Guido 建议不要在一行代码中执行太多,因为它会降低可读性。通过在单行与多行中执行您想要的操作,性能提升很小(如果有的话)。

于 2009-01-02T06:28:58.843 回答
2

pylab 提供了一个 flatten: 链接到 numpy flatten

于 2014-02-22T17:01:33.030 回答
2

如果您正在寻找一种内置的、简单的、单线的,您可以使用:

a = [[1, 2, 3], [4, 5, 6]
b = [i[x] for i in a for x in range(len(i))]
print b

返回

[1, 2, 3, 4, 5, 6]
于 2015-08-27T15:39:06.737 回答
1

如果列表中的每个项目都是一个字符串(并且这些字符串中的任何字符串都使用“”而不是''),则可以使用正则表达式(re模块)

>>> flattener = re.compile("\'.*?\'")
>>> flattener
<_sre.SRE_Pattern object at 0x10d439ca8>
>>> stred = str(in_list)
>>> outed = flattener.findall(stred)

上面的代码将 in_list 转换为字符串,使用正则表达式查找引号内的所有子字符串(即列表的每个项目)并将它们作为列表吐出。

于 2014-12-03T20:06:19.483 回答
1

一个简单的替代方法是使用numpy 的连接,但它将内容转换为浮点数:

import numpy as np
print np.concatenate([[1,2],[3],[5,89],[],[6]])
# array([  1.,   2.,   3.,   5.,  89.,   6.])
print list(np.concatenate([[1,2],[3],[5,89],[],[6]]))
# [  1.,   2.,   3.,   5.,  89.,   6.]
于 2015-10-14T08:29:29.143 回答
1

在 Python 2 或 3 中实现这一点的最简单方法是使用morph库,使用pip install morph.

代码是:

import morph

list = [[1,2],[3],[5,89],[],[6]]
flattened_list = morph.flatten(list)  # returns [1, 2, 3, 5, 89, 6]
于 2015-12-15T20:00:04.643 回答
0

Python 3.4中,您将能够:

[*innerlist for innerlist in outer_list]
于 2013-09-27T14:42:38.613 回答