2

我正在尝试根据 S&P500 指数(月度数据)构建跟随动量投资组合策略的趋势

我使用考夫曼的分形效率比过滤掉洗盘信号(http://etfhq.com/blog/2011/02/07/kaufmans-efficiency-ratio/

我成功地编码了,但它非常笨拙,所以我需要建议以获得更好的代码。

战略

  1. 从雅虎财经获取标准普尔500指数数据
  2. 计算回溯期 X 的考夫曼效率比 (1 , if close > close(n), 0)
  3. 平均计算值 2,从 1 到 12 时间段 ---> 每月资产配置比率,1 资产配置比率 = 现金(每年 3%)

我很难平均 1 到 12 的效率比。当然,我知道它可以通过 for 循环简单地实现,而且是非常简单的任务,但我失败了。

我需要更简洁和精致的代码,有人可以帮助我吗?

a['meanfractal']在下面的代码中困扰我..

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import pandas_datareader.data as web

def price(stock, start):
    price = web.DataReader(name=stock, data_source='yahoo', start=start)['Adj Close']
    return price.div(price.iat[0]).resample('M').last().to_frame('price')

a = price('SPY','2000-01-01')

def fractal(a,p):
    a['direction'] = np.where(a['price'].diff(p)>0,1,0)
    a['abs'] = a['price'].diff(p).abs()
    a['volatility'] = a.price.diff().abs().rolling(p).sum()
    a['fractal'] = a['abs'].values/a['volatility'].values*a['direction'].values
    return a['fractal']

def meanfractal(a):
    a['meanfractal']= (fractal(a,1).values+fractal(a,2).values+fractal(a,3).values+fractal(a,4).values+fractal(a,5).values+fractal(a,6).values+fractal(a,7).values+fractal(a,8).values+fractal(a,9).values+fractal(a,10).values+fractal(a,11).values+fractal(a,12).values)/12
    a['portfolio1'] = (a.price/a.price.shift(1).values*a.meanfractal.shift(1).values+(1-a.meanfractal.shift(1).values)*1.03**(1/12)).cumprod()
    a['portfolio2'] = ((a.price/a.price.shift(1).values*a.meanfractal.shift(1).values+1.03**(1/12))/(1+a.meanfractal.shift(1))).cumprod()
    a=a.dropna()
    a=a.div(a.ix[0])
    return a[['price','portfolio1','portfolio2']].plot()        

print(a)
plt.show()
4

1 回答 1

2

p您可以通过将对应的值存储在 a 中DF而不是分别计算每个系列来进一步简化,如下所示:

def fractal(a, p):
    df = pd.DataFrame()
    for count in range(1,p+1):
        a['direction'] = np.where(a['price'].diff(count)>0,1,0)
        a['abs'] = a['price'].diff(count).abs()
        a['volatility'] = a.price.diff().abs().rolling(count).sum()
        a['fractal'] = a['abs']/a['volatility']*a['direction']
        df = pd.concat([df, a['fractal']], axis=1)
    return df

然后,您可以将重复操作分配给一个变量,从而减少重新计算时间。

def meanfractal(a, l=12):
    a['meanfractal']= pd.DataFrame(fractal(a, l)).sum(1,skipna=False)/l
    mean_shift = a['meanfractal'].shift(1)
    price_shift = a['price'].shift(1)
    factor = 1.03**(1/l)
    a['portfolio1'] = (a['price']/price_shift*mean_shift+(1-mean_shift)*factor).cumprod()
    a['portfolio2'] = ((a['price']/price_shift*mean_shift+factor)/(1+mean_shift)).cumprod()
    a.dropna(inplace=True)
    a = a.div(a.ix[0])
    return a[['price','portfolio1','portfolio2']].plot() 

得到的结果图:

meanfractal(a)

图片

注意:如果速度不是主要问题,您可以通过存在的内置方法执行操作,pandas而不是将它们转换为相应的numpy数组值。

于 2016-10-13T09:17:55.203 回答