1

如何从 wordnet 生成更普遍、更不普遍和等价的关系?

RitaWordnet 中的 wordnet 相似度给出了一个像 -1.0、0.222 或 1.0 这样的数字,但如何得出更一般、更不一般的单词之间的关系?哪种工具最适合这个?请帮我

我得到 java.lang.NullPointerException,在它打印“全音词是”之后

package wordnet;

import rita.wordnet.RiWordnet;

public class Main {
    public static void main(String[] args) {
        try {
            // Would pass in a PApplet normally, but we don't need to here
            RiWordnet wordnet = new RiWordnet();
            wordnet.setWordnetHome("/usr/share/wordnet/dict");
            // Demo finding parts of speech
            String word = "first name";
            System.out.println("\nFinding parts of speech for " + word + ".");
            String[] partsofspeech = wordnet.getPos(word);
            for (int i = 0; i < partsofspeech.length; i++) {
                System.out.println(partsofspeech[i]);
            }

            //word = "eat";
            String pos = wordnet.getBestPos(word);
            System.out.println("\n\nDefinitions for " + word + ":");
            // Get an array of glosses for a word
            String[] glosses = wordnet.getAllGlosses(word, pos);
            // Display all definitions
            for (int i = 0; i < glosses.length; i++) {
                System.out.println(glosses[i]);
            }

            // Demo finding a list of related words (synonyms)
            //word = "first name";
            String[] poss = wordnet.getPos(word);
            for (int j = 0; j < poss.length; j++) {
                System.out.println("\n\nSynonyms for " + word + " (pos: " + poss[j] + ")");
                String[] synonyms = wordnet.getAllSynonyms(word, poss[j], 10);
                for (int i = 0; i < synonyms.length; i++) {
                    System.out.println(synonyms[i]);
                }
            }

            // Demo finding a list of related words
            // X is Hypernym of Y if every Y is of type X
            // Hyponym is the inverse
            //word = "nurse";
            pos = wordnet.getBestPos(word);
            System.out.println("\n\nHyponyms for " + word + ":");
            String[] hyponyms = wordnet.getAllHyponyms(word, pos);
            //System.out.println(hyponyms.length);
            //if(hyponyms!=null)
            for (int i = 0; i < hyponyms.length; i++) {


                System.out.println(hyponyms[i]);
            }

            System.out.println("\n\nHypernyms for " + word + ":");
            String[] hypernyms = wordnet.getAllHypernyms(word, pos);
            //if(hypernyms!=null)
            for (int i = 0; i < hypernyms.length; i++) {
                System.out.println(hypernyms[i]);
            }

               System.out.println("\n\nHolonyms for " + word + ":");

            String[] holonyms = wordnet.getAllHolonyms(word, pos);
            //if(holonyms!=null)
            for (int i = 0; i < holonyms.length; i++) {
                System.out.println(holonyms[i]);
            }

              System.out.println("\n\nmeronyms for " + word + ":");
            String[] meronyms = wordnet.getAllMeronyms(word, pos);
            if(meronyms!=null)
            for (int i = 0; i < meronyms.length; i++) {
                System.out.println(meronyms[i]);
            }
              System.out.println("\n\nAntonym for " + word + ":");
            String[] antonyms = wordnet.getAllAntonyms(word, pos);
            if(antonyms!=null)
            for (int i = 0; i < antonyms.length; i++) {
                System.out.println(antonyms[i]);
            }


            String start = "cameras";
            String end = "digital cameras";
            pos = wordnet.getBestPos(start);

            // Wordnet can find relationships between words
            System.out.println("\n\nRelationship between: " + start + " and " + end);
            float dist = wordnet.getDistance(start, end, pos);
            String[] parents = wordnet.getCommonParents(start, end, pos);
            System.out.println(start + " and " + end + " are related by a distance of: " + dist);

            // These words have common parents (hyponyms in this case)
            System.out.println("Common parents: ");
            if (parents != null) {
                for (int i = 0; i < parents.length; i++) {
                    System.out.println(parents[i]);
                }
            }

            //wordnet.
            // System.out.println("\n\nHypernym Tree for " + start);
            // int[] ids = wordnet.getSenseIds(start,wordnet.NOUN);
            // wordnet.printHypernymTree(ids[0]);
        } catch (Exception e) {
            e.printStackTrace();
        }
     }
  }
4

2 回答 2

2

Rita wordnet 确实提供了用于查找上位词(更通用)、下位词(不那么通用)和同义词的 api。详情请查看以下页面:-

http://www.rednoise.org/rita/wordnet/documentation/index.htm

要了解所有这些术语(上位词等),请查看 wordnet 的维基百科页面。

于 2010-10-20T12:59:34.077 回答
0

您可以尝试自己解析数据库。不会那么难。1)在以下文件中找到单词:index.noun、index.verb、index.adj 和 index.noun,2)提取其同义词集(“sense”)的 id,并为每个同义词集转到 data.noun 、data.verb、data.adj 或 data.noun 并提取其上位词或下位词的同义词集 id。然后在这些同义词集 id 中搜索同义词和光泽。如果您使用正则表达式,这相当容易。

数据库(例如 index.verb)可以在 Wordnet 的一个目录中找到,您可以从这里下载。如果您使用的是 Linux,还有一个不错的命令行程序可以为您完成这项工作,但如果您想将它集成到 Java 代码中,恐怕您必须自己完成所有解析。您可能还会发现此链接很有趣。希望这可以帮助:)

PS:你也可以试试NLTK(用 Python 写的)

于 2010-10-21T15:34:05.310 回答