1

我正在使用 RcppDL 库做一些实验。训练后,我使用原始数据集重建数据。但是,所有数据都具有相同的值。

我的数据(第一列是 id):

1        17      13       83       0       0           1          2      0      0    104     0   13
2         1       0       18       0       0           0          0      0      0      4     1   13
3         1       1       58       0       0           0          0      0      0      4     1   21
4         4      15      174       9       0          15          0      0      0    154     0   21
5         0       0        8       0       0           0          1      0      0      4     1   20
6         0       1        4       0       0           0          1      0      0      3     1   20
7         0       0      253       0       0           0          1      0      0     21     1   17
8         0       0        0       0       0           0          1      0      0      7     1   17
9         0       1       49       0       0           0          1      0      0      4     1   11
10        4       3       54       1       0           1          3      0      0     21     0   11
11        0       0        0       0       0           0          1      0      0      5     1   11
12        0       0        0       0       0           0          1      0      0      5     1   11
13        0       0        0       0       0           0          1      0      0      7     1   11
14        0       0        0       0       0           0          0      0      0      4     1   11
15        1       0        0       0       0           0          0      0      0      4     1   11
16        0       2        0       0       0           0          0      0      0      4     1   10
17        0       1        5       0       0           0          1      0      0     33     1   10
18        0       0        4       0       0           9          1      0      0     79     1   14
19        0       0        0       0       0           0          3      0      0     33     1   14
20        0       0        2       0       0           0          0      0      0      4     1   14
21        0       1        9       0       0           0          1      0      1     37     1   14
22        0       0        2       0       0           0          2      0      0      8     1   21
23        0       0        7       0       0           0          2      0      0      7     1   21
24        0       0        1       0       0           0          2      0      0      8     1   21
25        0       0      207       0       0           0          2      0      0      7     1   21
26        0       0        0       0       0           0          0      0      0      8     1   15
27        0       0        0       0       0           0          0      0      0      4     1   18
28        0       0        1       0       0           5          0      0      0    135     1   18
29        0       0        0       0       0           0          0      0      0      4     1   18
30        0       0       19       0       0           0          0      0      0      4     1   22
31        0       0       95       0       0           0          0      0      0      4     1   22
32        2       7      130       6       0           6          0      0      0    148     0   22
33        0       0        0       0       0           0          0      0      0     18     1   12
34        1       0      129       0       0           0          0      0      0     25     1   12
35        0       0        1       0       0           0          0      0      0      8     1   12
36        0       0        0       0       0           0          0      0      0      4     1   12
37        0       0        0       0       0           8          0      0      0     72     1   20
38        0       0        7       0       0           0          0      0      0      4     1   20
39        1       1       57       3       0           5          2      1      0    151     0   20
40        0       1       16       0       0           0          3      1      0     51     1   16

重建后我得到了什么:

           [,1]     [,2] [,3]      [,4]       [,5] [,6]      [,7]       [,8]      [,9] [,10]     [,11] [,12]
 [1,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
 [2,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
 [3,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
 [4,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
 [5,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
 [6,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
 [7,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
 [8,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
 [9,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[10,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[11,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[12,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[13,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[14,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[15,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[16,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[17,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[18,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[19,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[20,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[21,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[22,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[23,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[24,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[25,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[26,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[27,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[28,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[29,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[30,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[31,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[32,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[33,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[34,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[35,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[36,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[37,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[38,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[39,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1
[40,] 0.7905348 0.999999    1 0.4721214 0.01729769    1 0.8770443 0.05453092 0.0353921     1 0.9994972     1

我的代码非常简单:

  da_obj <- Rda(x.new)
  setCorruptionLevel(da_obj, 0.01)
  setHiddenRepresentation(da_obj, 8)
  setTrainingEpochs(da_obj, 500)
  setLearningRate(da_obj, 0.002)
  train(da_obj)
  coord <- reconstruct(da_obj, x.new)

谁能帮我弄清楚这里出了什么问题?

4

0 回答 0