59

我在 C API 中看到了以下两种声明不透明类型的风格。在 C 中声明不透明结构/指针的各种方法是什么?使用一种风格比另一种风格有什么明显的优势吗?

选项1

// foo.h
typedef struct foo * fooRef;
void doStuff(fooRef f);

// foo.c
struct foo {
    int x;
    int y;
};

选项 2

// foo.h
typedef struct _foo foo;
void doStuff(foo *f);

// foo.c
struct _foo {
    int x;
    int y;
};
4

4 回答 4

95

我的投票是 mouviciel 发布然后删除的第三个选项:

我见过第三种方式:

// foo.h
struct foo;
void doStuff(struct foo *f);

// foo.c
struct foo {
    int x;
    int y;
};

如果你实在受不了输入struct关键字,typedef struct foo foo;(注意:去掉无用和有问题的下划线)是可以接受的。但无论你做什么,永远不要使用typedef来定义指针类型的名称。它隐藏了极其重要的信息,即这种类型的变量引用了一个可以在您将它们传递给函数时进行修改的对象,并且它使处理const指针的不同限定(例如,-限定)版本成为一个主要的痛苦。

于 2010-10-19T04:23:05.577 回答
6

选项 1.5(“基于对象”的 C 架构):

我习惯于使用Option 1,除非您将引用命名_h为表示它是给定 C“类”的 C 样式“对象”的“句柄”。然后,您确保您的函数原型使用const该对象“句柄”的内容仅为输入且不能更改的任何地方,并且不要使用可以const更改内容的任何地方。所以,做这种风格:

// -------------
// my_module.h
// -------------

// An opaque pointer (handle) to a C-style "object" of "class" type 
// "my_module" (struct my_module_s *, or my_module_h):
typedef struct my_module_s *my_module_h;

void doStuff1(my_module_h my_module);
void doStuff2(const my_module_h my_module);

// -------------
// my_module.c
// -------------

// Definition of the opaque struct "object" of C-style "class" "my_module".
struct my_module_s
{
    int int1;
    int int2;
    float f1;
    // etc. etc--add more "private" member variables as you see fit
};

这是在 C 中使用不透明指针创建对象的完整示例。以下架构可能被称为“基于对象的 C”:

//==============================================================================================
// my_module.h
//==============================================================================================

// An opaque pointer (handle) to a C-style "object" of "class" type "my_module" (struct
// my_module_s *, or my_module_h):
typedef struct my_module_s *my_module_h;

// Create a new "object" of "class" "my_module": A function that takes a *pointer to* an
// "object" handle, `malloc`s memory for a new copy of the opaque  `struct my_module_s`, then
// points the user's input handle (via its passed-in pointer) to this newly-created  "object" of
// "class" "my_module".
void my_module_open(my_module_h * my_module_h_p);

// A function that takes this "object" (via its handle) as an input only and cannot modify it
void my_module_do_stuff1(const my_module_h my_module);

// A function that can modify the private content of this "object" (via its handle) (but still
// cannot modify the  handle itself)
void my_module_do_stuff2(my_module_h my_module);

// Destroy the passed-in "object" of "class" type "my_module": A function that can close this
// object by stopping all operations, as required, and `free`ing its memory.
void my_module_close(my_module_h my_module);

//==============================================================================================
// my_module.c
//==============================================================================================

// Definition of the opaque struct "object" of C-style "class" "my_module".
// - NB: Since this is an opaque struct (declared in the header but not defined until the source
// file), it has the  following 2 important properties:
// 1) It permits data hiding, wherein you end up with the equivalent of a C++ "class" with only
// *private* member  variables.
// 2) Objects of this "class" can only be dynamically allocated. No static allocation is
// possible since any module including the header file does not know the contents of *nor the
// size of* (this is the critical part) this "class" (ie: C struct).
struct my_module_s
{
    int my_private_int1;
    int my_private_int2;
    float my_private_float;
    // etc. etc--add more "private" member variables as you see fit
};

void my_module_open(my_module_h * my_module_h_p)
{
    // Ensure the passed-in pointer is not NULL (since it is a core dump/segmentation fault to
    // try to dereference  a NULL pointer)
    if (!my_module_h_p)
    {
        // Print some error or store some error code here, and return it at the end of the
        // function instead of returning void.
        goto done;
    }

    // Now allocate the actual memory for a new my_module C object from the heap, thereby
    // dynamically creating this C-style "object".
    my_module_h my_module; // Create a local object handle (pointer to a struct)
    // Dynamically allocate memory for the full contents of the struct "object"
    my_module = malloc(sizeof(*my_module)); 
    if (!my_module) 
    {
        // Malloc failed due to out-of-memory. Print some error or store some error code here,
        // and return it at the end of the function instead of returning void.   
        goto done;
    }

    // Initialize all memory to zero (OR just use `calloc()` instead of `malloc()` above!)
    memset(my_module, 0, sizeof(*my_module));

    // Now pass out this object to the user, and exit.
    *my_module_h_p = my_module;

done:
}

void my_module_do_stuff1(const my_module_h my_module)
{
    // Ensure my_module is not a NULL pointer.
    if (!my_module)
    {
        goto done;
    }

    // Do stuff where you use my_module private "member" variables.
    // Ex: use `my_module->my_private_int1` here, or `my_module->my_private_float`, etc. 

done:
}

void my_module_do_stuff2(my_module_h my_module)
{
    // Ensure my_module is not a NULL pointer.
    if (!my_module)
    {
        goto done;
    }

    // Do stuff where you use AND UPDATE my_module private "member" variables.
    // Ex:
    my_module->my_private_int1 = 7;
    my_module->my_private_float = 3.14159;
    // Etc.

done:
}

void my_module_close(my_module_h my_module)
{
    // Ensure my_module is not a NULL pointer.
    if (!my_module)
    {
        goto done;
    }

    free(my_module);

done:
}

简化示例用法:

#include "my_module.h"

#include <stdbool.h>
#include <stdio.h>

int main()
{
    printf("Hello World\n");

    bool exit_now = false;

    // setup/initialization
    my_module_h my_module = NULL;
    // For safety-critical and real-time embedded systems, it is **critical** that you ONLY call
    // the `_open()` functions during **initialization**, but NOT during normal run-time,
    // so that once the system is initialized and up-and-running, you can safely know that
    // no more dynamic-memory allocation, which is non-deterministic and can lead to crashes,
    // will occur.
    my_module_open(&my_module);
    // Ensure initialization was successful and `my_module` is no longer NULL.
    if (!my_module)
    {
        // await connection of debugger, or automatic system power reset by watchdog
        log_errors_and_enter_infinite_loop(); 
    }

    // run the program in this infinite main loop
    while (exit_now == false)
    {
        my_module_do_stuff1(my_module);
        my_module_do_stuff2(my_module);
    }

    // program clean-up; will only be reached in this case in the event of a major system 
    // problem, which triggers the infinite main loop above to `break` or exit via the 
    // `exit_now` variable
    my_module_close(my_module);

    // for microcontrollers or other low-level embedded systems, we can never return,
    // so enter infinite loop instead
    while (true) {}; // await reset by watchdog

    return 0;
}

除此之外,唯一的改进是:

  1. 实现完整的错误处理并返回错误而不是void. 前任:

     /// @brief my_module error codes
     typedef enum my_module_error_e
     {
         /// No error
         MY_MODULE_ERROR_OK = 0,
    
         /// Invalid Arguments (ex: NULL pointer passed in where a valid pointer is required)
         MY_MODULE_ERROR_INVARG,
    
         /// Out of memory
         MY_MODULE_ERROR_NOMEM,
    
         /// etc. etc.
         MY_MODULE_ERROR_PROBLEM1,
     } my_module_error_t;
    

    现在,不是void在上面和下面的所有函数中返回一个类型,my_module_error_t而是返回一个错误类型!

  2. 在 .h 文件中添加一个调用的配置结构my_module_config_t,并将其传递给open函数以在创建新对象时更新内部变量。这有助于将所有配置变量封装在单个结构中,以便在调用_open().

    例子:

     //--------------------
     // my_module.h
     //--------------------
    
     // my_module configuration struct
     typedef struct my_module_config_s
     {
         int my_config_param_int;
         float my_config_param_float;
     } my_module_config_t;
    
     my_module_error_t my_module_open(my_module_h * my_module_h_p, 
                                      const my_module_config_t *config);
    
     //--------------------
     // my_module.c
     //--------------------
    
     my_module_error_t my_module_open(my_module_h * my_module_h_p, 
                                      const my_module_config_t *config)
     {
         my_module_error_t err = MY_MODULE_ERROR_OK;
    
         // Ensure the passed-in pointer is not NULL (since it is a core dump/segmentation fault
         // to try to dereference  a NULL pointer)
         if (!my_module_h_p)
         {
             // Print some error or store some error code here, and return it at the end of the
             // function instead of returning void. Ex:
             err = MY_MODULE_ERROR_INVARG;
             goto done;
         }
    
         // Now allocate the actual memory for a new my_module C object from the heap, thereby
         // dynamically creating this C-style "object".
         my_module_h my_module; // Create a local object handle (pointer to a struct)
         // Dynamically allocate memory for the full contents of the struct "object"
         my_module = malloc(sizeof(*my_module)); 
         if (!my_module) 
         {
             // Malloc failed due to out-of-memory. Print some error or store some error code
             // here, and return it at the end of the function instead of returning void. Ex:
             err = MY_MODULE_ERROR_NOMEM;
             goto done;
         }
    
         // Initialize all memory to zero (OR just use `calloc()` instead of `malloc()` above!)
         memset(my_module, 0, sizeof(*my_module));
    
         // Now initialize the object with values per the config struct passed in. Set these
         // private variables inside `my_module` to whatever they need to be. You get the idea...
         my_module->my_private_int1 = config->my_config_param_int;
         my_module->my_private_int2 = config->my_config_param_int*3/2;
         my_module->my_private_float = config->my_config_param_float;        
         // etc etc
    
         // Now pass out this object handle to the user, and exit.
         *my_module_h_p = my_module;
    
     done:
         return err;
     }
    

    和用法:

     my_module_error_t err = MY_MODULE_ERROR_OK;
    
     my_module_h my_module = NULL;
     my_module_config_t my_module_config = 
     {
         .my_config_param_int = 7,
         .my_config_param_float = 13.1278,
     };
     err = my_module_open(&my_module, &my_module_config);
     if (err != MY_MODULE_ERROR_OK)
     {
         switch (err)
         {
         case MY_MODULE_ERROR_INVARG:
             printf("MY_MODULE_ERROR_INVARG\n");
             break;
         case MY_MODULE_ERROR_NOMEM:
             printf("MY_MODULE_ERROR_NOMEM\n");
             break;
         case MY_MODULE_ERROR_PROBLEM1:
             printf("MY_MODULE_ERROR_PROBLEM1\n");
             break;
         case MY_MODULE_ERROR_OK:
             // not reachable, but included so that when you compile with 
             // `-Wall -Wextra -Werror`, the compiler will fail to build if you forget to handle
             // any of the error codes in this switch statement.
             break;
         }
    
         // Do whatever else you need to in the event of an error, here. Ex:
         // await connection of debugger, or automatic system power reset by watchdog
         while (true) {}; 
     }
    
     // ...continue other module initialization, and enter main loop
    

也可以看看:

  1. [我的另一个答案引用了我上面的答案] C 中不透明结构和数据隐藏的架构考虑和方法

关于基于对象的 C 架构的补充阅读:

  1. 在推出自己的结构时提供辅助功能

goto对专业代码错误处理的有效使用的附加阅读和理由:

  1. goto支持在 C 中使用错误处理的论点: https ://github.com/ElectricRCAircraftGuy/eRCaGuy_dotfiles/blob/master/Research_General/goto_for_error_handling_in_C/readme.md
  2. *****优秀文章展示了在 C 中使用错误处理的优点goto:“在 C 中使用 goto 进行错误处理” - https://eli.thegreenplace.net/2009/04/27/using-goto-for- c 中的错误处理
  3. 在 C 中有效地使用 goto 进行错误管理?
  4. C 代码中的错误处理

搜索词以使其更易于搜索:C 中的不透明指针、C 中的不透明结构、C 中的 typedef 枚举、C 中的错误处理、c 体系结构、基于对象的 c 体系结构、c 中初始化体系结构时的动态内存分配

于 2019-02-01T23:07:11.263 回答
1

bar(const fooRef)声明一个不可变地址作为参数。 bar(const foo *)声明一个不可变 foo 的地址作为参数。

出于这个原因,我倾向于选择选项 2。即,呈现的接口类型是可以在每个间接级别指定 cv-ness 的接口类型。当然,可以回避选项 1 库编写器并直接使用foo,当库编写器更改实现时,您会面临各种恐惧。(即,选项 1 库编写器仅认为它fooRef是不变接口的一部分,并且foo可以来、去、更改,无论如何。选项 2 库编写器认为它foo是不变接口的一部分。)

我更惊讶的是没有人建议组合 typedef/struct 结构。
typedef struct { ... } foo;

于 2010-10-19T04:34:14.520 回答
0

选项 3:让人们选择

/*  foo.h  */

typedef struct PersonInstance PersonInstance;

typedef struct PersonInstance * PersonHandle;

typedef const struct PersonInstance * ConstPersonHandle;

void saveStuff (PersonHandle person);

int readStuff (ConstPersonHandle person);

...


/*  foo.c  */

struct PersonInstance {
    int a;
    int b;
    ...
};

...
于 2022-02-13T06:33:41.417 回答