6

我有一张我发现轮廓的图像,skimage.measure.find_contours()但现在我想为完全超出最大闭合轮廓的像素创建一个蒙版。知道怎么做吗?

修改文档中的示例:

import numpy as np
import matplotlib.pyplot as plt
from skimage import measure

# Construct some test data
x, y = np.ogrid[-np.pi:np.pi:100j, -np.pi:np.pi:100j]
r = np.sin(np.exp((np.sin(x)**2 + np.cos(y)**2)))

# Find contours at a constant value of 0.8
contours = measure.find_contours(r, 0.8)

# Select the largest contiguous contour
contour = sorted(contours, key=lambda x: len(x))[-1]

# Display the image and plot the contour
fig, ax = plt.subplots()
ax.imshow(r, interpolation='nearest', cmap=plt.cm.gray)
X, Y = ax.get_xlim(), ax.get_ylim()
ax.step(contour.T[1], contour.T[0], linewidth=2, c='r')
ax.set_xlim(X), ax.set_ylim(Y)
plt.show()

这是红色的轮廓:

在此处输入图像描述

但是如果放大,请注意轮廓不在像素的分辨率上。

在此处输入图像描述

如何创建与原始像素相同尺寸且像素完全位于外部(即未与轮廓线相交)的图像?例如

from numpy import ma
masked_image = ma.array(r.copy(), mask=False)
masked_image.mask[pixels_outside_contour] = True

谢谢!

4

3 回答 3

5

有点晚了,但你知道这句话。以下是我将如何完成此任务。

import scipy.ndimage as ndimage    

# Create an empty image to store the masked array
r_mask = np.zeros_like(r, dtype='bool')

# Create a contour image by using the contour coordinates rounded to their nearest integer value
r_mask[np.round(contour[:, 0]).astype('int'), np.round(contour[:, 1]).astype('int')] = 1

# Fill in the hole created by the contour boundary
r_mask = ndimage.binary_fill_holes(r_mask)

# Invert the mask since you want pixels outside of the region
r_mask = ~r_mask

在此处输入图像描述

于 2018-09-21T11:42:36.867 回答
2

如果您仍在寻找一种更快的方法来实现这一目标,我建议您使用skimage.draw.polygon,我对此有点陌生,但它似乎内置于执行您想要完成的任务:

import numpy as np
from skimage.draw import polygon

# fill polygon
poly = np.array((
    (300, 300),
    (480, 320),
    (380, 430),
    (220, 590),
    (300, 300),
))
rr, cc = polygon(poly[:, 0], poly[:, 1], img.shape)
img[rr, cc, 1] = 1

因此,在您的情况下,“闭合轮廓”是“多边形”,我们正在创建一个空白图像,轮廓的形状填充值为 1:

mask = np.zeros(r.shape)
rr, cc = polygon(contour[:, 0], contour[:, 1], mask.shape)
mask[rr, cc] = 1

现在您可以将您的蒙版应用到原始图像上,以掩盖轮廓之外的所有内容:

masked = ma.array(r.copy(), mask=mask)

记录在scikit 图像中 - 形状

于 2020-03-27T15:06:28.310 回答
1

好的,我可以通过将轮廓转换为路径然后选择里面的像素来完成这项工作:

# Convert the contour into a closed path
from matplotlib import path
closed_path = path.Path(contour.T)

# Get the points that lie within the closed path
idx = np.array([[(i,j) for i in range(r.shape[0])] for j in range(r.shape[1])]).reshape(np.prod(r.shape),2)
mask = closed_path.contains_points(idx).reshape(r.shape)

# Invert the mask and apply to the image
mask = np.invert(mask)
masked_data = ma.array(r.copy(), mask=mask)

然而,这是一种缓慢的测试N = r.shape[0]*r.shape[1]像素的遏制措施。谁有更快的算法?谢谢!

于 2016-10-04T16:17:45.080 回答