val sparkConf = new SparkConf().setAppName("ShortTwitterAnalysis").setMaster("local[2]")
val sc = new SparkContext(sparkConf)
val text = sc.textFile("/home/tobbyj/HW1_INF553/shortTwitter.txt")
val twitter = text
.map(_.toLowerCase)
.map(_.replace("\t", ""))
.map(_.replace("\"", ""))
.map(_.replace("\n", ""))
.map(_.replace(".", ""))
.map(_.replaceAll("[\\p{C}]", ""))
.map(_.split("text:")(1).split(",source:")(0))
.zipWithIndex.map(_.swap)
使用上面的代码,我得到如下结果。
(0,a rose by any other name would smell as sweet)
(1,a rose is a rose is a rose)
(4,rt @nba2k: the battle of two young teams tough season but one will emerge victorious who will it be? lakers or 76ers? https:\/\/tco\/nukkjq\u2026)
(2,love is like a rose the joy of all the earth)
(5,i was going to bake a cake and listen to the football flour refund?)
(3,at christmas i no more desire a rose than wish a snow in may’s new-fangled mirth)
但是,我想要的结果是从 1 开始的 'key' 和 'value' 分成如下单词以便您理解,即使我不确定它是否会如下所示。
(1,(a, rose, by, any, other, name, would, smell, as, sweet))
(2,(a, rose, is, a, rose, is, a, rose))
...
我厌倦的代码是
.map{case(key, value)=>(key+1, value.split(" "))}
但给我结果如下
(1,[Ljava.lang.String;@1dff58b)
(2,[Ljava.lang.String;@167179a3)
(3,[Ljava.lang.String;@73e8c7d7)
(4,[Ljava.lang.String;@7bffa418)
(5,[Ljava.lang.String;@2d385beb)
(6,[Ljava.lang.String;@4f1ab87e)
有什么建议么?在这一步之后,我将它们映射为 (1, a), (1, rose), (1, by)...(2, love), (2, rose), ....