我正在使用 SciPy 进行练习,但在尝试使用 fmin_slsqp 时遇到了错误。我设置了一个问题,我想在给定一组约束的情况下最大化目标函数 U。
我有两个控制变量,x[0,t] 和 x[1,t],如您所见,它们由 t(时间段)索引。目标函数为:
def obj_fct(x, alpha,beta,Al):
U = 0
x[1,0] = x0
for t in trange:
U = U - beta**t * ( (Al[t]*L)**(1-alpha) * x[1,t]**alpha - x[0,t])
return U
约束是在这两个变量上定义的,其中一个将变量从一个时期 (t) 链接到另一个时期 (t-1)。
def constr(x,alpha,beta,Al):
return np.array([
x[0,t],
x[1,0] - x0,
x[1,t] - x[0,t] - (1-delta)*x[1,t-1]
])
最后,这里是fmin_slsqp的使用:
sol = fmin_slsqp(obj_fct, x_init, f_eqcons=constr, args=(alpha,beta,Al))
撇开有更好的方法来解决这种动态问题这一事实不谈,我的问题是关于语法的。运行这个简单的代码时,我收到以下错误:
Traceback (most recent call last):
File "xxx", line 34, in <module>
sol = fmin_slsqp(obj_fct, x_init, f_eqcons=constr, args=(alpha,beta,Al))
File "D:\Anaconda3\lib\site-packages\scipy\optimize\slsqp.py", line 207, in fmin_slsqp
constraints=cons, **opts)
File "D:\Anaconda3\lib\site-packages\scipy\optimize\slsqp.py", line 311, in _minimize_slsqp
meq = sum(map(len, [atleast_1d(c['fun'](x, *c['args'])) for c in cons['eq']]))
File "D:\Anaconda3\lib\site-packages\scipy\optimize\slsqp.py", line 311, in <listcomp>
meq = sum(map(len, [atleast_1d(c['fun'](x, *c['args'])) for c in cons['eq']]))
File "xxx", line 30, in constr
x[0,t],
IndexError: too many indices for array
[Finished in 0.3s with exit code 1]
我究竟做错了什么?
代码的初始部分,为参数赋值,是:
from scipy.optimize import fmin_slsqp
import numpy as np
T = 30
beta = 0.96
L = 1
x0 = 1
gl = 0.02
alpha = 0.3
delta = 0.05
x_init = np.array([1,0.1])
A_l0 = 1000
Al = np.zeros((T+1,1))
Al[1] = A_l0
trange = np.arange(1,T+1,1, dtype='Int8') # does not include period zero
for t in trange: Al[t] = A_l0*(1 + gl)**(t-1)