0

我只是在与正弦波的调制作斗争。我有一个频率(来自混乱的数据 - 随时间变化),现在我需要绘制具有相应频率的正弦波。

真实数据和窦

蓝线只是真实数据的绘制点,绿色是我到目前为止所做的,但它根本与真实数据不对应。

绘制正弦波的代码在底部:

def plotmodulsin():
    n = 530
    f1, f2 = 16, 50 # frequency

    t = linspace(6.94,8.2,530)
    dt = t[1] - t[0] # needed for integration
    print t[1]
    print t[0]
    f_inst = logspace(log10(f1), log10(f2), n)
    phi = 2 * pi * cumsum(f_inst) * dt # integrate to get phase
    pylab.plot(t, 5*sin(phi))

幅度矢量:

[2.64, -2.64, 6.14, -6.14, 9.56, -9.56, 12.57, -12.57, 15.55, -15.55, 18.04, -18.04, 21.17, -21.17, 23.34, -23.34, 25.86, -25.86, 28.03, , 30.49, -30.49, 33.28, -33.28, 35.36, -35.36, 36.47, -36.47, 38.86, -38.86, 41.49, -41.49, 42.91, -42.91, 44.41, -44.41, 45.98, -45.8, -45.8, -45.98 , 47.63, -47.63, 51.23, -51.23, 51.23, -51.23, 53.18, -53.18, 55.24, -55.24, 55.24, -55.24, 55.24, -55.24, 57.43, -57.43, 557.43,, -57.4, -559.7, -57.4 , 59.75, -59.75, 59.75, -59.75, 59.75, -59.75, 62.22, -62.22, 59.75, -59.75, 62.22, -62.22, 59.75, -59.75, 62.22, -62.22, 62.22, -62.2, 6559.5, -62.2 , 62.22, -62.22, 62.22, -62.22, 59.75, -59.75, 62.22, -62.22, 62.22, -62.22, 62.22, -62.22, 59.75, -59.75, 62.22, -62.22, 2, 62.75, -, -59.2, 26.22 , 59.75, -59.75, 59.75]

真实数据的时间向量:

[6.954,6.985,7.016,7.041,7.066,7.088,7.11,7.13,7.149,7.167,7.186,7.219,7.219,7.219,7.235,7.251,7.251,7.266,7.266,7.282 ,7.404、7.417、7.43、7.442、7.454、7.466、7.478、7.49、7.501、7.513、7.513、7.524、7.536、7.547、7.547、7.558、7.569、7.569、7.58、7.591 , 7.686, 7.697, 7.707, 7.717, 7.728, 7.738, 7.748, 7.758, 7.768, 7.778, 7.788, 7.798, 7.808, 7.818, 7.828, 7.838, 7.848, 7.858, 7.868, 7.877, 7.887, 7.897, 7.907, 7.917, 7.927 , 7.937, 7.946, 7.956, 7.966, 7.976, 7.986, 7.996, 8.006, 8.016, 8.026, 8.035, 8.045, 8.055, 8.065, 8.075, 8.084, 8.094, 8.104, 8.114, 8.124, 8.134, 8.144, 8.154, 8.164, 8.174 , 8.184, 8.194, 8.20]

所以我需要生成具有恒定幅度和以下频率的窦:

[10.5,16.03,20.0,22.94,25.51,27.47,29.76,29.76,33.25,32.89,34.25,35.71,37.31,37.31,38.46,39.06,39.06,41.32,41.37 , 48.08, 48.08, 49.02, 49.02, 50.0, 50.0, 50.0, 50.0]

4

1 回答 1

0

您可以通过从数据中提取频率和幅度的估计值,尝试将您的函数与正弦或实际上类似余弦的函数相匹配。如果我理解正确,您的数据是最大值和最小值,并且您希望有一个类似的三角函数。如果您的数据保存在两个数组中timevalue则幅度估计值仅由 给出np.abs(value)。频率以最大值和最小值之间的时间差的两倍的倒数给出。freq = 0.5/(time[1:]-time[:-1])为您提供每个时间间隔中点的频率估计值。因此,相应的时间给出为freqTimes = (time[1:]+time[:-1])/2.

为了获得更平滑的曲线,您现在可以对这些幅度和频率值进行插值,以获得介于两者之间的值的估计值。一个非常简单的方法是使用np.interp,它会做一个简单的线性插值。您必须指定在哪些时间点进行插值。我们将为此构造一个数组,然后通过以下方式进行插值:

n = 10000
timesToInterpolate = np.linspace(time[0], time[-1], n, endpoint=True)
freqInterpolated = np.interp(timesToInterpolate, freqTimes, freq)
amplInterpolated = np.interp(timesToInterpolate, time, np.abs(value))

现在您可以通过以下方式进行您在示例中已经拥有的集成:

phi = (2*np.pi*np.cumsum(freqInterpolated)
       *(timesToInterpolate[1]-timesToInterpolate[0]))

现在你可以绘图了。所以把它们放在一起会给你:

import numpy as np
import matplotlib.pyplot as plt

time  = np.array([6.954, 6.985, 7.016, 7.041, 7.066, 7.088, 7.11, 7.13]) #...
value = np.array([2.64, -2.64, 6.14, -6.14, 9.56, -9.56, 12.57, -12.57]) #...

freq = 0.5/(time[1:]-time[:-1])
freqTimes = (time[1:]+time[:-1])/2.

n = 10000
timesToInterpolate = np.linspace(time[0], time[-1], n, endpoint=True)
freqInterpolated   = np.interp(timesToInterpolate, freqTimes, freq)
amplInterpolated   = np.interp(timesToInterpolate, time, np.abs(value))

phi = (2*np.pi*np.cumsum(freqInterpolated)
       *(timesToInterpolate[1]-timesToInterpolate[0]))

plt.plot(time, value)
plt.plot(timesToInterpolate, amplInterpolated*np.cos(phi)) #or np.sin(phi+np.pi/2)
plt.show()

结果如下所示(如果包含完整数组):

在此处输入图像描述

于 2016-09-02T14:43:02.400 回答