0

我正在使用 TensorFlow 0.9 版实现双向标记 GRU 网络(前一层,后一层)。在模型初始化时,TensorFlow 会初始化所有变量,创建 GRU 单元并正确应用所有常规转换,直到运行该tf.nn.bidirectional_rnn函数,它会抛出与形状不正确的张量合并操作相关的 ValueError。这是代码:

# Create the cells
with tf.variable_scope('forward'):
    self.char_gru_cell_fw = tf.nn.rnn_cell.GRUCell(char_hidden_size)
with tf.variable_scope('backward'):
    self.char_gru_cell_bw = tf.nn.rnn_cell.GRUCell(char_hidden_size)

# Set initial state of the cells to be zero
self._char_initial_state_fw = \
    self.char_gru_cell_fw.zero_state(batch_size, tf.float32)
self._char_initial_state_bw = \
    self.char_gru_cell_bw.zero_state(batch_size, tf.float32)

#         Size before: batch-chrpad-chrvocabsize
#          Size after: batch-chrvocabsize
chargruinput = [tf.squeeze(input_, [1]) \
    for input_ in tf.split(1, char_num_steps, chargruinput)]

# Run the bidirectional rnn and get the corner results
_, output_state_fw, output_state_bw = \
   tf.nn.bidirectional_rnn(self.char_gru_cell_fw, 
                    self.char_gru_cell_bw, 
                    chargruinput, 
                    sequence_length=char_num_steps,
                    initial_state_fw=self._char_initial_state_fw,
                    initial_state_bw=self._char_initial_state_bw)

当我运行它时,我收到以下错误:

Traceback (most recent call last):
  File "frontbackgru.py", line 409, in <module>
    main()
  File "frontbackgru.py", line 226, in main
    config=my_config)
  File "/home/xG/Code/4-RNN/1-simple-cnn-input-classifier/gru_model.py", line 265, in __init__
    initial_state_bw=self._char_initial_state_bw)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.py", line 453, in bidirectional_rnn
    sequence_length, scope=fw_scope)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.py", line 156, in rnn
    state_size=cell.state_size)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.py", line 343, in _rnn_step
    _maybe_copy_some_through)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/control_flow_ops.py", line 1331, in cond
    _, res_f = context_f.BuildCondBranch(fn2)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/control_flow_ops.py", line 1230, in BuildCondBranch
    r = fn()
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.py", line 317, in _maybe_copy_some_through
    lambda: _copy_some_through(new_output, new_state))
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/control_flow_ops.py", line 1331, in cond
    _, res_f = context_f.BuildCondBranch(fn2)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/control_flow_ops.py", line 1230, in BuildCondBranch
    r = fn()
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.py", line 317, in <lambda>
    lambda: _copy_some_through(new_output, new_state))
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/rnn.py", line 298, in _copy_some_through
    return ([math_ops.select(copy_cond, zero_output, new_output)]
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_math_ops.py", line 1769, in select
    name=name)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/op_def_library.py", line 704, in apply_op
    op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2262, in create_op
    set_shapes_for_outputs(ret)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1702, in set_shapes_for_outputs
    shapes = shape_func(op)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/math_ops.py", line 1578, in _SelectShape
    t_e_shape = t_e_shape.merge_with(c_shape)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/tensor_shape.py", line 570, in merge_with
    (self, other))
ValueError: Shapes (32, 50) and () are not compatible

现在,函数的输入bidirectional_rnn是:

self.char_gru_cell_fwchar_hidden_size:这是一个 GRUCell 实例,在这种情况下用整数值 50 初始化

self.char_gru_cell_bwchar_hidden_size:这是一个 GRUCell 实例,在这种情况下用整数值 50 初始化

chargruinput:这是一个长度为 30 的列表,包含形状为 [ batch_size, charvocab] 的张量,在本例中为 [32,256]

sequence_length: 一个整数,表示展开单元格的数量,char_num_steps在本例中为 30。

initial_state_fw: 一个与 GRU 状态相同形状的零填充张量,在本例中为 [32,50]

initial_state_bw: 一个与 GRU 状态相同形状的零填充张量,在本例中为 [32,50]

我尝试查看导致抛出 ValueError 异常的模块,但是有很多低级的东西很可能工作正常,看看我上周工作的 CNN 是如何工作的,没有任何问题。这让我觉得在低级方法之前,rnnorrnn_cell库中出现了我以前没有使用过的问题。

这似乎也很奇怪,因为错误与空形状有关(与我假设的标量而不是张量相关联),但我唯一能够更改的是bidirectional_rnn函数参数中的标量是sequence_length参数。我尝试忽略它并仅使用初始状态,反之亦然,但会弹出相同的错误。

有没有人有类似的问题?我的整个系统都因此而瘫痪,希望得到一些反馈。提前致谢

4

1 回答 1

0

弄清楚出了什么问题-参数sequence_length实际上应该是batch_size每个批次的长度整数列表,而不是整数本身。轻松修复,感谢您的参与 :)

于 2016-08-18T06:06:29.343 回答