我正在尝试与不同架构中的另一个编码器/解码器共享架构的编码器/解码器子网络之间的参数。这对于我的问题是必要的,因为在测试时它需要大量的计算(和时间)来对原始架构进行前向传递,然后提取解码器结果。然而,我注意到的是,虽然我在做的时候明确要求参数共享clone()
,但参数是不共享的,每个架构在训练时都有自己的参数。
我通过一些print()
语句通过将一些随机向量前向传播到两种架构的解码器和编码器中来展示两种架构的结果之间的差异(您也可以比较它们的权重)。
所以我想知道,谁能帮我找出共享参数时我做错了什么?
下面我发布我的代码的简化版本:
require 'nn'
require 'nngraph'
require 'cutorch'
require 'cunn'
require 'optim'
input = nn.Identity()()
encoder = nn.Sequential():add(nn.Linear(100, 20)):add(nn.ReLU(true)):add(nn.Linear(20, 10))
decoder = nn.Sequential():add(nn.Linear(10, 20)):add(nn.ReLU(true)):add(nn.Linear(20, 100))
code = encoder(input)
reconstruction = decoder(code)
outsideCode = nn.Identity()()
decoderCloned= decoder:clone('weight', 'bias', 'gradWeight', 'gradBias')
outsideReconstruction = decoderCloned(nn.JoinTable(1)({code, outsideCode}))
dumbNet = nn.Sequential():add(nn.Linear(100, 10))
codeRecon = dumbNet(outsideReconstruction)
input2 = nn.Identity()()
encoderTestTime = encoder:clone('weight', 'bias', 'gradWeight', 'gradBias')
decoderTestTime = decoder:clone('weight', 'bias', 'gradWeight', 'gradBias')
codeTest = encoderTestTime(input2)
reconTest = decoderTestTime(codeTest)
gMod = nn.gModule({input, outsideCode}, {reconstruction, codeRecon})
gModTest = nn.gModule({input2}, {reconTest})
criterion1 = nn.BCECriterion()
criterion2 = nn.MSECriterion()
-- Okay, the module has been created. Now it's time to do some other stuff
params, gParams = gMod:getParameters()
numParams = params:nElement()
memReqForParams = numParams * 5 * 4 / 1024 / 1024 -- Convert to MBs
-- If enough memory on GPU, move stuff to the GPU
if memReqForParams <= 1000 then
gMod = gMod:cuda()
gModTest = gModTest:cuda()
criterion1 = criterion1:cuda()
criterion2 = criterion2:cuda()
params, gParams = gMod:getParameters()
end
-- Data
Data = torch.rand(200, 100):cuda()
Data[Data:gt(0.5)] = 1
Data[Data:lt(0.5)] = 0
fakeCodes = torch.rand(400, 10):cuda()
config = {learningRate = 0.001}
state = {}
-- Start training
print ("\nEncoders before training: \n\tgMod's Encoder: " .. gMod:get(2):forward(torch.ones(1, 100):cuda()):sum() .. "\n\tgModTest's Encoder: " .. gModTest:get(2):forward(torch.ones(1, 100):cuda()):sum())
print ("\nDecoders before training: \n\tgMod's Decoder: " .. gMod:get(3):forward(torch.ones(1, 10):cuda()):sum() .. "\n\tgModTest's Decoder: " .. gModTest:get(3):forward(torch.ones(1, 10):cuda()):sum())
gMod:training()
for i=1, Data:size(1) do
local opfunc = function(x)
if x ~= params then
params:copy(x)
end
gMod:zeroGradParameters()
recon, outsideRecon = unpack(gMod:forward({Data[{{i}}], fakeCodes[{{i}}]}))
err = criterion1:forward(recon, Data[{{i}}])
df_dw = criterion1:backward(recon, Data[{{i}}])
errFake = criterion2:forward(outsideRecon, fakeCodes[{{i*2-1, i * 2}}])
df_dwFake = criterion2:backward(outsideRecon, fakeCodes[{{i*2-1, i * 2}}])
errorGrads = {df_dw, df_dwFake}
gMod:backward({Data[{{i}}], fakeCodes[{{i*2-1, i * 2}}]}, errorGrads)
return err, gParams
end
x, reconError = optim.adam(opfunc, params, config, state)
end
print ("\n\nEncoders after training: \n\tgMod's Encoder: " .. gMod:get(2):forward(torch.ones(1, 100):cuda()):sum() .. "\n\tgModTest's Encoder: " .. gModTest:get(2):forward(torch.ones(1, 100):cuda()):sum())
print ("\nDecoders after training: \n\tgMod's Decoder: " .. gMod:get(3):forward(torch.ones(1, 10):cuda()):sum() .. "\n\tgModTest's Decoder: " .. gModTest:get(3):forward(torch.ones(1, 10):cuda()):sum())