我有看起来与此类似的数据框:
maindata <- data.frame(cbind(num=c(79,61,62,57),
denom=c(162356,170189,164634,162006),
group=c(1,2,3,4)))
我的目的是选择每一行,执行引导重采样,找到 95% 置信区间的分位数,并将 CI 输出到具有 2 列和与原始数据帧相同行数的数据帧。这个带有嵌套 foreach 和 %do% 的函数运行良好,但在迭代次数较多(例如 1000 次)和数据帧较多的情况下速度较慢:
boots = function(data, boots, seed=1234){
if (!missing(seed))
set.seed(seed)
pct <- NULL
ci.pct <- list()
foreach(j=1:nrow(data)) %do% {
datast1 <- c(rep(1, data[j,]$num),
rep(0, data[j,]$denom))
foreach(i=1:boots, .combine='c') %do% {
index <- sample(1:length(datast1), size=length(datast1), replace=TRUE)
sampledata <- datast1[index]
pct[i] <- mean(sampledata)
}
ci.pct[[j]] <- cbind(quantile(pct, prob=c(0.025))*100000,
quantile(pct, prob=c(0.975))*100000)
}
ci.pcts <- do.call("rbind", ci.pct)
return(ci.pcts)
}
boots(data=maindata, boots=5, seed=1234)
我一直试图找出一种方法来使用 %dopar% 进行并行处理,但不能完全掌握它:
bootsd = function(data, boots, seed=1234){
if (!missing(seed))
set.seed(seed)
pct <- NULL
ci.pct <- list()
foreach(j=1:nrow(data)) %do% {
datast1 <- c(rep(1, data[j,]$num),
rep(0, data[j,]$denom))
foreach(i=1:boots, .combine='c') %dopar% {
index <- sample(1:length(datast1), size=length(datast1), replace=TRUE)
sampledata <- datast1[index]
pct[i] <- mean(sampledata)
}
ci.pct[[j]] <- cbind(quantile(pct, prob=c(0.025))*100000,
quantile(pct, prob=c(0.975))*100000)
}
ci.pcts <- do.call("rbind", ci.pct)
return(ci.pcts)
}
bootsd(data=maindata, boots=5, seed=1234)
有没有人有关于如何修改代码以通过正确实现 %dopar% 或其他一些巧妙的技巧来使其运行得更快的建议?