我有两个逻辑和两个有序逻辑回归模型:
model <- glm(Y1 ~ X1+X2+X3+X4+X5, data = data, family = "binomial") #logistic
modelInteraction <- glm(Y1 ~ X1+X2+X3+X4+X5+X1*X5, data = data, family = "binomial") #logistic
require(MASS)
data$Y2 <- as.factor(data$Y2) # make the Y2 into a ordinal one
mod<- polr(Y2 ~X1+X2+X3+X4+X5 ,data=data, Hess = TRUE) #ordered logistic
modInteraction<- polr(Y2~X1+X2+X3+X4+X5+X1*X5 ,data=data, Hess = TRUE) #ordered logistic
为了计算逻辑模型的边际效应(MEM 方法),我使用了以下mfx
软件包:
require(mfx)
a <- logitmfx(model, data=data, atmean=TRUE)
b <- logitmfx(modelInteraction, data=data, atmean=TRUE)
为了计算有序逻辑模型的边际效应,我使用了这个erer
包:
require(erer)
c <- ocME(mod)
d <- ocME(modInteraction)
我现在想做的是:
- 绘制 的所有结果(即所有变量)
a, b, c, and d
。 - 仅显示一个变量的结果:
X1
c(0,1) - 在 0 和 1 之间变化 X1 - 而其他变量保持其平均值(对于逻辑和有序逻辑模型)。
图 1中的 y 轴表示参数估计值,x 轴表示变量的名称
- 我还想在
b
和d
(即X1*X5
)中绘制交互项,以获得与此类似的图:图 2
图 2中的 y 轴表示概率差异,x 轴表示X5
(即 -10 到 +10)的最小值和最大值
我一直在寻找解决方案,但找不到任何解决方案。我真的很感激任何建议!
一个可重现的样本(最初来自http://www.ats.ucla.edu/stat/data/binary.csv;我做了一些更改以使其与我的数据集更相似):
> dput(data)
structure(list(Y1 = c(0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 1L, 0L,
0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 1L,
1L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, NA, 1L, 0L, 1L,
1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L,
0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L,
0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L,
1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L,
0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L,
1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L,
0L, 1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L,
0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, NA,
0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L,
0L, NA, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 1L, 1L, 1L,
1L, 0L, 0L, 0L, 0L, 0L), Y2 = structure(c(1L, 3L, 2L, 2L, 1L,
2L, 2L, 1L, 3L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L,
2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L,
1L, NA, 3L, 1L, 2L, 2L, 1L, 1L, 3L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 1L, 3L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 2L, 1L, 1L, 1L, 1L, 3L,
1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 3L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
1L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 2L, 1L, 3L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L,
3L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 3L, 1L, 2L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 3L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 3L, 1L, 1L, 1L,
2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 3L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 3L, 1L, 1L, 1L,
1L, 3L, 3L, 3L, 1L, 1L, 3L, 2L, 1L, 2L, 1L, 3L, 1L, 1L, 2L, 1L,
2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, NA, 1L, 1L, 1L, 3L, 2L, 2L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 3L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 3L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 2L, 1L, 1L, 1L, 3L, 1L,
3L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 3L, 1L, 2L, 2L, 1L,
1L, 3L, 1L, 2L, 2L, 1L, NA, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 3L, 2L,
2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 3L, 1L, 2L, 1L, 1L,
1L, 3L, 2L, 3L, 2L, 3L, 1L, 1L, 1L, 1L, 1L), .Label = c("0",
"1", "2"), class = "factor"), X1 = c(0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L,
0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L,
1L, 1L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 1L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L,
1L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L,
0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L,
0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L,
1L, 1L, 0L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L,
0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X2 = c(380L, 660L, 800L,
640L, 520L, 760L, 560L, 400L, 540L, 700L, 800L, 440L, 760L, 700L,
700L, 480L, 780L, 360L, 800L, 540L, 500L, 660L, 600L, 680L, 760L,
800L, 620L, 520L, 780L, 520L, 540L, 760L, 600L, 800L, 360L, 400L,
580L, 520L, NA, 520L, 560L, 580L, 600L, 500L, 700L, 460L, 580L,
500L, 440L, 400L, 640L, 440L, 740L, 680L, 660L, 740L, 560L, 380L,
400L, 600L, 620L, 560L, 640L, 680L, 580L, 600L, 740L, 620L, 580L,
800L, 640L, 300L, 480L, 580L, 720L, 720L, 560L, 800L, 540L, 620L,
700L, 620L, 500L, 380L, 500L, 520L, 600L, 600L, 700L, 660L, 700L,
720L, 800L, 580L, 660L, 660L, 640L, 480L, 700L, 400L, 340L, 580L,
380L, 540L, 660L, 740L, 700L, 480L, 400L, 480L, 680L, 420L, 360L,
600L, 720L, 620L, 440L, 700L, 800L, 340L, 520L, 480L, 520L, 500L,
720L, 540L, 600L, 740L, 540L, 460L, 620L, 640L, 580L, 500L, 560L,
500L, 560L, 700L, 620L, 600L, 640L, 700L, 620L, 580L, 580L, 380L,
480L, 560L, 480L, 740L, 800L, 400L, 640L, 580L, 620L, 580L, 560L,
480L, 660L, 700L, 600L, 640L, 700L, 520L, 580L, 700L, 440L, 720L,
500L, 600L, 400L, 540L, 680L, 800L, 500L, 620L, 520L, 620L, 620L,
300L, 620L, 500L, 700L, 540L, 500L, 800L, 560L, 580L, 560L, 500L,
640L, 800L, 640L, 380L, 600L, 560L, 660L, 400L, 600L, 580L, 800L,
580L, 700L, 420L, 600L, 780L, 740L, 640L, 540L, 580L, 740L, 580L,
460L, 640L, 600L, 660L, 340L, 460L, 460L, 560L, 540L, 680L, 480L,
800L, 800L, 720L, 620L, 540L, 480L, 720L, 580L, 600L, 380L, 420L,
800L, 620L, 660L, 480L, 500L, 700L, 440L, 520L, 680L, 620L, 540L,
800L, 680L, 440L, 680L, 640L, 660L, 620L, 520L, 540L, 740L, 640L,
520L, 620L, 520L, 640L, 680L, 440L, 520L, 620L, 520L, 380L, 560L,
600L, 680L, 500L, 640L, 540L, 680L, 660L, 520L, 600L, 460L, 580L,
680L, 660L, 660L, 360L, 660L, 520L, 440L, 600L, 800L, 660L, 800L,
420L, 620L, 800L, 680L, 800L, 480L, 520L, 560L, NA, 540L, 720L,
640L, 660L, 400L, 680L, 220L, 580L, 540L, 580L, 540L, 440L, 560L,
660L, 660L, 520L, 540L, 300L, 340L, 780L, 480L, 540L, 460L, 460L,
500L, 420L, 520L, 680L, 680L, 560L, 580L, 500L, 740L, 660L, 420L,
560L, 460L, 620L, 520L, 620L, 540L, 660L, 500L, 560L, 500L, 580L,
520L, 500L, 600L, 580L, 400L, 620L, 780L, 620L, 580L, 700L, 540L,
760L, 700L, 720L, 560L, 720L, 520L, 540L, 680L, NA, 560L, 480L,
460L, 620L, 580L, 800L, 540L, 680L, 680L, 620L, 560L, 560L, 620L,
800L, 640L, 540L, 700L, 540L, 540L, 660L, 480L, 420L, 740L, 580L,
640L, 640L, 800L, 660L, 600L, 620L, 460L, 620L, 560L, 460L, 700L,
600L), X3 = c(3.61, 3.67, 4, 3.19, 2.93, 3, 2.98, 3.08, 3.39,
3.92, 4, 3.22, 4, 3.08, 4, 3.44, 3.87, 2.56, 3.75, 3.81, 3.17,
3.63, 2.82, 3.19, 3.35, 3.66, 3.61, 3.74, 3.22, 3.29, 3.78, 3.35,
3.4, 4, 3.14, 3.05, 3.25, 2.9, NA, 2.68, 2.42, 3.32, 3.15, 3.31,
2.94, 3.45, 3.46, 2.97, 2.48, 3.35, 3.86, 3.13, 3.37, 3.27, 3.34,
4, 3.19, 2.94, 3.65, 2.82, 3.18, 3.32, 3.67, 3.85, 4, 3.59, 3.62,
3.3, 3.69, 3.73, 4, 2.92, 3.39, 4, 3.45, 4, 3.36, 4, 3.12, 4,
2.9, 3.07, 2.71, 2.91, 3.6, 2.98, 3.32, 3.48, 3.28, 4, 3.83,
3.64, 3.9, 2.93, 3.44, 3.33, 3.52, 3.57, 2.88, 3.31, 3.15, 3.57,
3.33, 3.94, 3.95, 2.97, 3.56, 3.13, 2.93, 3.45, 3.08, 3.41, 3,
3.22, 3.84, 3.99, 3.45, 3.72, 3.7, 2.92, 3.74, 2.67, 2.85, 2.98,
3.88, 3.38, 3.54, 3.74, 3.19, 3.15, 3.17, 2.79, 3.4, 3.08, 2.95,
3.57, 3.33, 4, 3.4, 3.58, 3.93, 3.52, 3.94, 3.4, 3.4, 3.43, 3.4,
2.71, 2.91, 3.31, 3.74, 3.38, 3.94, 3.46, 3.69, 2.86, 2.52, 3.58,
3.49, 3.82, 3.13, 3.5, 3.56, 2.73, 3.3, 4, 3.24, 3.77, 4, 3.62,
3.51, 2.81, 3.48, 3.43, 3.53, 3.37, 2.62, 3.23, 3.33, 3.01, 3.78,
3.88, 4, 3.84, 2.79, 3.6, 3.61, 2.88, 3.07, 3.35, 2.94, 3.54,
3.76, 3.59, 3.47, 3.59, 3.07, 3.23, 3.63, 3.77, 3.31, 3.2, 4,
3.92, 3.89, 3.8, 3.54, 3.63, 3.16, 3.5, 3.34, 3.02, 2.87, 3.38,
3.56, 2.91, 2.9, 3.64, 2.98, 3.59, 3.28, 3.99, 3.02, 3.47, 2.9,
3.5, 3.58, 3.02, 3.43, 3.42, 3.29, 3.28, 3.38, 2.67, 3.53, 3.05,
3.49, 4, 2.86, 3.45, 2.76, 3.81, 2.96, 3.22, 3.04, 3.91, 3.34,
3.17, 3.64, 3.73, 3.31, 3.21, 4, 3.55, 3.52, 3.35, 3.3, 3.95,
3.51, 3.81, 3.11, 3.15, 3.19, 3.95, 3.9, 3.34, 3.24, 3.64, 3.46,
2.81, 3.95, 3.33, 3.67, 3.32, 3.12, 2.98, 3.77, 3.58, 3, 3.14,
3.94, 3.27, 3.45, 3.1, 3.39, 3.31, 3.22, 3.7, 3.15, 2.26, 3.45,
2.78, 3.7, 3.97, 2.55, 3.25, 3.16, NA, 3.5, 3.4, 3.3, 3.6, 3.15,
3.98, 2.83, 3.46, 3.17, 3.51, 3.13, 2.98, 4, 3.67, 3.77, 3.65,
3.46, 2.84, 3, 3.63, 3.71, 3.28, 3.14, 3.58, 3.01, 2.69, 2.7,
3.9, 3.31, 3.48, 3.34, 2.93, 4, 3.59, 2.96, 3.43, 3.64, 3.71,
3.15, 3.09, 3.2, 3.47, 3.23, 2.65, 3.95, 3.06, 3.35, 3.03, 3.35,
3.8, 3.36, 2.85, 4, 3.43, 3.12, 3.52, 3.78, 2.81, 3.27, 3.31,
3.69, 3.94, 4, 3.49, 3.14, NA, 3.36, 2.78, 2.93, 3.63, 4, 3.89,
3.77, 3.76, 2.42, 3.37, 3.78, 3.49, 3.63, 4, 3.12, 2.7, 3.65,
3.49, 3.51, 4, 2.62, 3.02, 3.86, 3.36, 3.17, 3.51, 3.05, 3.88,
3.38, 3.75, 3.99, 4, 3.04, 2.63, 3.65, 3.89), X4 = c(3L, 3L,
1L, 4L, 4L, 2L, 1L, 2L, 3L, 2L, 4L, 1L, 1L, 2L, 1L, 3L, 4L, 3L,
2L, 1L, 3L, 2L, 4L, 4L, 2L, 1L, 1L, 4L, 2L, 1L, 4L, 3L, 3L, 3L,
1L, 2L, 1L, 3L, NA, 3L, 2L, 2L, 2L, 3L, 2L, 3L, 2L, 4L, 4L, 3L,
3L, 4L, 4L, 2L, 3L, 3L, 3L, 3L, 2L, 4L, 2L, 4L, 3L, 3L, 3L, 2L,
4L, 1L, 1L, 1L, 3L, 4L, 4L, 2L, 4L, 3L, 3L, 3L, 1L, 1L, 4L, 2L,
2L, 4L, 3L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 4L, 2L,
2L, 3L, 3L, 3L, 4L, 3L, 2L, 2L, 1L, 2L, 3L, 2L, 4L, 4L, 3L, 1L,
3L, 3L, 2L, 2L, 1L, 3L, 2L, 2L, 3L, 3L, 3L, 4L, 1L, 4L, 2L, 4L,
2L, 2L, 2L, 3L, 2L, 3L, 4L, 3L, 2L, 1L, 2L, 4L, 4L, 3L, 4L, 3L,
2L, 3L, 1L, 1L, 1L, 2L, 2L, 3L, 3L, 4L, 2L, 1L, 2L, 3L, 2L, 2L,
2L, 2L, 2L, 1L, 4L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 4L, 2L, 2L, 3L,
3L, 3L, 3L, 4L, 2L, 2L, 4L, 2L, 3L, 2L, 2L, 2L, 2L, 3L, 3L, 4L,
2L, 2L, 3L, 4L, 3L, 4L, 3L, 2L, 1L, 4L, 1L, 3L, 1L, 1L, 3L, 2L,
4L, 2L, 2L, 3L, 2L, 3L, 1L, 1L, 1L, 2L, 3L, 3L, 1L, 3L, 2L, 3L,
2L, 4L, 2L, 2L, 4L, 3L, 2L, 3L, 1L, 2L, 2L, 2L, 4L, 3L, 2L, 1L,
3L, 2L, 1L, 3L, 2L, 2L, 3L, 3L, 4L, 4L, 2L, 4L, 4L, 3L, 2L, 3L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 3L, 2L, 3L, 2L, 3L, 2L, 1L,
2L, 2L, 3L, 1L, 4L, 2L, 2L, 3L, 4L, 4L, 2L, 4L, 1L, 4L, 4L, 4L,
2L, 2L, 2L, 1L, 1L, 3L, 1L, NA, 2L, 3L, 2L, 3L, 2L, 2L, 3L, 4L,
1L, 2L, 2L, 3L, 3L, 2L, 3L, 4L, 4L, 2L, 2L, 4L, 4L, 1L, 3L, 2L,
4L, 2L, 3L, 1L, 2L, 2L, 2L, 4L, 3L, 3L, 1L, 3L, 3L, 1L, 3L, 4L,
1L, 3L, 4L, 3L, 4L, 2L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 2L,
2L, 1L, 2L, 1L, 3L, 3L, 1L, 1L, 2L, NA, 1L, 3L, 3L, 3L, 1L, 2L,
2L, 3L, 1L, 1L, 2L, 4L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 1L, 2L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 3L, 2L, 3L, 2L, 2L, 3L), X5 = c(10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, -7L, -7L, -7L, -7L, -7L, -7L, -7L, -7L,
-7L, -7L, -7L, -7L, -7L, -7L, -7L, -7L, -7L, -7L, -7L, -7L, -7L,
-7L, -7L, -6L, 7L, -7L, -7L, -7L, 7L, 7L, 7L, 7L, 7L, 2L, -2L,
-2L, -2L, -2L, 0L, 3L, 5L, 5L, 5L, 5L, 0L, 0L, 6L, 6L, 6L, 6L,
6L, 5L, 5L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 10L, 10L, 10L, 10L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L,
9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 0L, 0L, 0L, 0L, 0L, 4L, 4L, 4L, 6L,
6L, 6L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 6L, 6L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
8L, 8L, 8L, -1L, 6L, 6L, 6L, 6L, 6L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, -3L, -3L, -3L, -3L, -3L,
-3L, -3L, -3L, -3L, -3L, -3L, -3L, -3L, -3L, -4L, -4L, -4L, -4L,
-4L, -4L, -4L, -4L, -4L, -4L, -4L, -4L, -4L, -4L, -4L, -5L, -5L,
-5L, -5L, -5L, -5L, -5L, -5L, -5L, -5L, -5L, -5L, -5L, -8L, -8L,
-8L, -8L, -8L, -8L, -8L, -8L, -8L, -8L, -8L, -8L, -8L, -8L, -8L,
-9L, -9L, -9L, -9L, -9L, -9L, -9L, -9L, -9L, -9L, -9L, -9L, -9L,
-9L, -9L, -10L, -10L, -10L, -10L, -10L, -10L, -10L, -10L, -10L,
-10L, -10L, -10L, -10L)), .Names = c("Y1", "Y2", "X1", "X2",
"X3", "X4", "X5"), row.names = c(NA, -400L), class = "data.frame")