我有一个如下所示的列表数据。我想为 列表中的每个元素在中间值和计数之间执行非线性回归高斯曲线拟合,并报告平均值和标准差
mylist<- structure(list(A = structure(list(breaks = c(-10, -9,
-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4), counts = c(1L,
0L, 1L, 5L, 9L, 38L, 56L, 105L, 529L, 2858L, 17L, 2L, 0L, 2L),
density = c(0.000276014352746343, 0, 0.000276014352746343,
0.00138007176373171, 0.00248412917471709, 0.010488545404361,
0.0154568037537952, 0.028981507038366, 0.146011592602815,
0.788849020149048, 0.00469224399668783, 0.000552028705492686,
0, 0.000552028705492686), mids = c(-9.5, -8.5, -7.5, -6.5,
-5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5),
xname = "x", equidist = TRUE), .Names = c("breaks", "counts",
"density", "mids", "xname", "equidist"), class = "histogram"),
B = structure(list(breaks = c(-7, -6, -5,
-4, -3, -2, -1, 0), counts = c(2L, 0L, 6L, 2L, 2L, 1L, 3L
), density = c(0.125, 0, 0.375, 0.125, 0.125, 0.0625, 0.1875
), mids = c(-6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5), xname = "x",
equidist = TRUE), .Names = c("breaks", "counts", "density",
"mids", "xname", "equidist"), class = "histogram"), C = structure(list(
breaks = c(-7, -6, -5, -4, -3, -2, -1, 0, 1), counts = c(2L,
2L, 4L, 5L, 14L, 22L, 110L, 3L), density = c(0.0123456790123457,
0.0123456790123457, 0.0246913580246914, 0.0308641975308642,
0.0864197530864197, 0.135802469135802, 0.679012345679012,
0.0185185185185185), mids = c(-6.5, -5.5, -4.5, -3.5,
-2.5, -1.5, -0.5, 0.5), xname = "x", equidist = TRUE), .Names = c("breaks",
"counts", "density", "mids", "xname", "equidist"), class = "histogram")), .Names = c("A",
"B", "C"))
我已经阅读了这篇 在 R 中将密度曲线拟合到直方图, 但这是将曲线拟合到直方图的方法。我想要的是最合适的价值观”
“平均值”“标清”
如果我使用 PRISM 来做,我应该得到以下 A 的结果
Mids Counts
-9.5 1
-8.5 0
-7.5 1
-6.5 5
-5.5 9
-4.5 38
-3.5 56
-2.5 105
-1.5 529
-0.5 2858
0.5 17
1.5 2
2.5 0
3.5 2
执行非线性回归高斯曲线拟合,我得到
"Best-fit values"
" Amplitude" 3537
" Mean" -0.751
" SD" 0.3842
对于第二组 B
Mids Counts
-6.5 2
-5.5 0
-4.5 6
-3.5 2
-2.5 2
-1.5 1
-0.5 3
"Best-fit values"
" Amplitude" 7.672
" Mean" -4.2
" SD" 0.4275
第三个
Mids Counts
-6.5 2
-5.5 2
-4.5 4
-3.5 5
-2.5 14
-1.5 22
-0.5 110
0.5 3
我明白了
"Best-fit values"
" Amplitude" 120.7
" Mean" -0.6893
" SD" 0.4397