0

我有一个如下所示的列表数据。我想为 列表中的每个元素在中间值和计数之间执行非线性回归高斯曲线拟合,并报告平均值标准

mylist<- structure(list(A = structure(list(breaks = c(-10, -9, 
-8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4), counts = c(1L, 
0L, 1L, 5L, 9L, 38L, 56L, 105L, 529L, 2858L, 17L, 2L, 0L, 2L), 
    density = c(0.000276014352746343, 0, 0.000276014352746343, 
    0.00138007176373171, 0.00248412917471709, 0.010488545404361, 
    0.0154568037537952, 0.028981507038366, 0.146011592602815, 
    0.788849020149048, 0.00469224399668783, 0.000552028705492686, 
    0, 0.000552028705492686), mids = c(-9.5, -8.5, -7.5, -6.5, 
    -5.5, -4.5, -3.5, -2.5, -1.5, -0.5, 0.5, 1.5, 2.5, 3.5), 
    xname = "x", equidist = TRUE), .Names = c("breaks", "counts", 
"density", "mids", "xname", "equidist"), class = "histogram"), 
    B = structure(list(breaks = c(-7, -6, -5, 
    -4, -3, -2, -1, 0), counts = c(2L, 0L, 6L, 2L, 2L, 1L, 3L
    ), density = c(0.125, 0, 0.375, 0.125, 0.125, 0.0625, 0.1875
    ), mids = c(-6.5, -5.5, -4.5, -3.5, -2.5, -1.5, -0.5), xname = "x", 
        equidist = TRUE), .Names = c("breaks", "counts", "density", 
    "mids", "xname", "equidist"), class = "histogram"), C = structure(list(
        breaks = c(-7, -6, -5, -4, -3, -2, -1, 0, 1), counts = c(2L, 
        2L, 4L, 5L, 14L, 22L, 110L, 3L), density = c(0.0123456790123457, 
        0.0123456790123457, 0.0246913580246914, 0.0308641975308642, 
        0.0864197530864197, 0.135802469135802, 0.679012345679012, 
        0.0185185185185185), mids = c(-6.5, -5.5, -4.5, -3.5, 
        -2.5, -1.5, -0.5, 0.5), xname = "x", equidist = TRUE), .Names = c("breaks", 
    "counts", "density", "mids", "xname", "equidist"), class = "histogram")), .Names = c("A", 
"B", "C"))

我已经阅读了这篇 在 R 中将密度曲线拟合到直方图, 但这是将曲线拟合到直方图的方法。我想要的是最合适的价值观”

“平均值”“标清”

如果我使用 PRISM 来做,我应该得到以下 A 的结果

Mids   Counts
-9.5    1
-8.5    0
-7.5    1
-6.5    5
-5.5    9
-4.5    38
-3.5    56
-2.5    105
-1.5    529
-0.5    2858
0.5     17
1.5     2
2.5     0
3.5     2

执行非线性回归高斯曲线拟合,我得到

"Best-fit values"   
"     Amplitude"    3537
"     Mean"       -0.751
"     SD"         0.3842

对于第二组 B

Mids   Counts
-6.5    2
-5.5    0
-4.5    6
-3.5    2
-2.5    2
-1.5    1
-0.5    3



"Best-fit values"   
"     Amplitude"    7.672
"     Mean"         -4.2
"     SD"          0.4275

第三个

Mids   Counts
-6.5    2
-5.5    2
-4.5    4
-3.5    5
-2.5    14
-1.5    22
-0.5    110
0.5      3

我明白了

"Best-fit values"   
"     Amplitude"    120.7
"     Mean"       -0.6893
"     SD"        0.4397
4

1 回答 1

1

为了将直方图转换回均值和标准差的估计值。首先将 bin 计数的结果与 bin 相乘。这将是原始数据的近似值。

根据您上面的示例:

#extract the mid points and create list of simulated data
simdata<-lapply(mylist, function(x){rep(x$mids, x$counts)})
#if the original data were integers then this may give a better estimate
#simdata<-lapply(mylist, function(x){rep(x$breaks[-1], x$counts)})

#find the mean and sd of simulated data
means<-lapply(simdata, mean)
sds<-lapply(simdata, sd)
#or use sapply in the above 2 lines depending on future process needs

如果您的数据是整数,那么使用中断作为 bin 将提供更好的估计。根据直方图的功能(即右=TRUE/FALSE),结果可能会移动一位。

编辑

我以为这将是一件容易的事。我查看了视频,显示的示例数据是:

mids<-seq(-7, 7)
counts<-c(7, 1, 2, 2, 2, 5, 217, 70, 18, 0, 2, 1, 2, 0, 1)
simdata<-rep(mids, counts)

视频结果平均值 = -0.7359 和 sd = 0.4571。我发现提供最接近结果的解决方案是使用“fitdistrplus”包:

fitdist(simdata, "norm", "mge")

使用“最大化拟合优度估计”导致平均值 = -0.7597280 和 sd = 0.8320465。
在这一点上,上面的方法提供了一个接近的估计,但并不完全匹配。我不知道用什么技术来计算视频的拟合度。

编辑#2

上述解决方案涉及重新创建原始数据并使用 mean/sd 或使用 fitdistrplus 包进行拟合。此尝试是尝试使用高斯分布执行最小二乘拟合。

simdata<-lapply(mylist, function(x){rep(x$mids, x$counts)})
means<-sapply(simdata, mean)
sds<-sapply(simdata, sd)

#Data from video
#mids<-seq(-7, 7)
#counts<-c(7, 1, 2, 2, 2, 5, 217, 70, 18, 0, 2, 1, 2, 0, 1)

#make list of the bins and distribution in each bin
mids<-lapply(mylist, function(x){x$mids})
dis<-lapply(mylist, function(x) {x$counts/sum(x$counts)})

#function to perform the least square fit
nnorm<-function(values, mids, dis) {
  means<-values[1]
  sds<-values[2]
  #print(paste(means, sds))
  #calculate out the Gaussian distribution for each bin
  modeld<-dnorm(mids, means, sds)  
  #sum of the squares
  diff<-sum( (modeld-dis)^2)
  diff
}

#use optim function with the mean and sd as initial guesses
#find the mininium with the mean and SD as fit parameters
lapply(1:3, function(i) {optim(c(means[[i]], sds[[i]]), nnorm, mids=mids[[i]], dis=dis[[i]])})

该解决方案为 PRISM 结果提供了更接近的答案,但仍然不一样。这是所有 4 种解决方案的比较。 在此处输入图像描述

从表中可以看出,最小二乘拟合(上面的那个)提供了最接近的近似值。也许调整中点 dnorm 函数可能会有所帮助。但是案例 B 的数据离正态分布最远,但 PRISM 软件仍然会产生一个小的标准偏差,而其他方法类似。PRISM 软件可能会执行某种类型的数据过滤以在拟合之前去除异常值。

于 2016-06-28T15:42:56.147 回答