上面有一些很好的答案——我无意贬低它们。
在实现类型检查器方面 - 在 Haskell 中它更简单(尽管可以想象这可以移植到 Scheme)。
这是 Haskell中的简单类型检查器,它是简单类型化 Lambda 演算的实现:
type OType = ObjType (Fix ObjType)
type OEnvironment = Map TermIdentifier OType
check :: OEnvironment -> Term OType -> OType
check env (Var i) = case lookup i env of
Nothing -> error $ "Unbound variable " ++ i
Just v -> v
check env (App f p) = let t_f = check env f
t_p = check env p
in case t_f of
Fun (Fix t_p') (Fix r)
| t_p == t_p' -> r
| otherwise -> error "Parameter mismatch"
_ -> error "Applied a non-function"
check env (Lam i ty t) = let r = check (insert i ty env) t
in Fun (Fix ty) (Fix r)
这是Haskell 中简单类型 Lambda 演算的另一种实现:
import Control.Applicative ((<$), (<$>))
import Control.Monad (guard)
import Safe (atMay)
data Type
= Base
| Arrow Type Type
deriving (Eq, Ord, Read, Show)
data Term
= Const
| Var Int -- deBruijn indexing; the nearest enclosing lambda binds Var 0
| Lam Type Term
| App Term Term
deriving (Eq, Ord, Read, Show)
check :: [Type] -> Term -> Maybe Type
check env Const = return Base
check env (Var v) = atMay env v
check env (Lam ty tm) = Arrow ty <$> check (ty:env) tm
check env (App tm tm') = do
Arrow i o <- check env tm
i' <- check env tm'
guard (i == i')
return o
eval :: Term -> Term
eval (App tm tm') = case eval tm of
Lam _ body -> eval (subst 0 tm' body)
eval v = v
subst :: Int -> Term -> Term -> Term
subst n tm Const = Const
subst n tm (Var m) = case compare m n of
LT -> Var m
EQ -> tm
GT -> Var (m-1)
subst n tm (Lam ty body) = Lam ty (subst (n+1) tm body)
subst n tm (App tm' tm'') = App (subst n tm tm') (subst n tm tm'')
evalMay :: Term -> Maybe Term
evalMay tm = eval tm <$ check [] tm