以下是我的源文件中的一个函数
cv::Mat* Retina::Preprocessing::create_mask(const cv::Mat *img, const uint8_t threshold) {
LOG_IF(ERROR, img->empty()) << "The input image is empty. Terminating Now!!";
cv::Mat green_channel(img->rows(), img->cols(), CV_8UC1); /*!< Green channel. */
/// Check number of channels in img and based on that find out the green channel.
switch (img->channels()){
/// For 3 channels, it is an RGB image and we use cv::mixChannels().
case(3): {
int from_to[] = {1,0};
cv::mixChannels(img, 1, &green_channel, 1, from_to, 1);
break;
}
/// For a single channel, we assume that it is the green channel.
case(1): {
green_channel = *img;
break;
}
/// Otherwise we are out of clue and throw an error.
default: {
LOG(ERROR)<<"Number of image channels found = "<< img->channels()<<". Terminating Now!!";
return nullptr; /*!< (unreachable code) Only given for completion */
}
}
cv::Mat mask(img->rows(), img->cols(), CV_8UC1);/*!< Empty mask image */
if (threshold == 0)/// Otsu's threshold is used
cv::threshold(green, mask, threshold, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
else /// We can use the provided threshold value
cv::threshold(green, mask, threshold, 255, CV_THRESH_BINARY);
LOG_IF(ERROR, mask.empty())<< "After thresholding, image became empty. Terminating Now!!";
std::vector<std::vector<cv::Point>> contours;
/// Get the contours in the binary mask.
cv::findContours(mask, *contours, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
size_t max_index{};
double prev_area{};
size_t index{};
/// Lambda function for a convenient one-liner std::for_each. SEE BELOW.
lambda_max_index = [max_index, prev_area, index] (std::vector<cv::Point> c){
double new_area { cv::contourArea(c) };
max_index = (new_area > prev_area) ? max_index = index : max_index;
++index;
};
/// For each contour compute its area, and over the loop find out the largest contour.
std::for_each(contours.begin(), contours.end(), lambda_max_index());
/// Iterate over each point and test if it lies inside the contour, and drive in it.
for(size_t row_pt = 0; row_pt < mask_out.rows(); ++row_pt){
for(size_t col_pt = 0; col_pt < mask_out.cols(); ++col_pt){
if (cv::pointPolygonTest(contours[max_index], cv::Point(row_pt, col_pt))>=0)
mask[row_pt, col_pt] = 255;
else
mask[row_pt, col_pt] = 0;
}
}
return &mask;
}
以下是我写的一个google单元测试文件。这是我第一次尝试使用 GoogleTest。
#include"PreProcessing.hxx"
#include<opencv2/highgui/highgui.hpp>
#include<gtest/gtest.h>
TEST(Fundus_Mask_Creation, NO_THRESHOLD) {
cv::Mat img(cv::imread(std::string("../data/test_img.jpg")));
cv::Mat* mask = Retina::Preprocessing::create_mask(&img);
ASSERT_TRUE(!(mask->empty()));
std::string winname("Input Image");
cv::namedWindow(winname);
cv::imshow(winname, img);
cv::waitKey(800);
cv::destroyWindow(winname);
winname = "Fundus Mask";
cv::namedWindow(winname);
cv::imshow(winname, *mask);
cv::waitKey(800);
}
TEST(Fundus_Mask_Creation, THRESHOLD) {
cv::Mat img(cv::imread(std::string("../data/test_img.jpg")));
std::uint8_t threshold{10};
cv::Mat* mask = Retina::Preprocessing::create_mask(&img, threshold);
ASSERT_TRUE(!(mask->empty()));
std::string winname("Input Image");
cv::namedWindow(winname);
cv::imshow(winname, img);
cv::waitKey(800);
cv::destroyWindow(winname);
winname = "Fundus Mask";
cv::namedWindow(winname);
cv::imshow(winname, *mask);
cv::waitKey(800);
}
我还想测试 glog 记录的情况"Number of image channels found = "<< img->channels()<<". Terminating Now!!!";
当我向它提供导致上述消息正确记录的输入时,我如何编写一个可以成功运行的单元测试(即原始源文件将记录一个致命错误)?