我有一个这样的数据集
Value Month Year
103.4 April 2006
270.6 August 2006
51.9 December 2006
156.9 February 2006
126.9 January 2006
96.8 July 2006
183.1 June 2006
266.6 March 2006
193.1 May 2006
524.7 November 2006
619.9 October 2006
129 September 2006
374.1 April 2007
260.5 August 2007
119.6 December 2007
9.9 February 2007
91.1 January 2007
106.6 July 2007
79.9 June 2007
60.5 March 2007
432.4 May 2007
128.8 November 2007
292.1 October 2007
129.3 September 2007
value 是一个地区的年降雨量。让我们称之为A区。我有 2006 年到 2014 年的数据集,我需要预测 A 区未来 2 年的降雨量。我从 sklearn 库中选择 pearson 相关和线性回归来预测数据。我很困惑,我不知道如何设置 X 和 Y。我是 Python 新手,所以每一个帮助都很有价值。谢谢
ps ..我找到了这样的代码
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
# Load the diabetes dataset
diabetes = datasets.load_diabetes()
# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)
# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean square error
print("Residual sum of squares: %.2f"
% np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test))
# Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue',
linewidth=3)
plt.xticks(())
plt.yticks(())
plt.show()
当我打印diabetes_X_train时,它给了我这个
[[ 0.07786339]
[-0.03961813]
[ 0.01103904]
[-0.04069594]
[-0.03422907]...]
我假设这是从相关性和系数中获得的 r 值。当我打印diabetes_Y_train时,它给了我这样的东西
[ 233. 91. 111. 152. 120. .....]
我的问题是如何从降雨中获取 r 值并将其分配给 x 轴