我正在尝试学习如何在 pyalgotrade 的事件分析器中实施自定义策略。这是他们给出的默认示例。
from pyalgotrade import eventprofiler
from pyalgotrade.technical import stats
from pyalgotrade.technical import roc
from pyalgotrade.technical import ma
from pyalgotrade.tools import yahoofinance
# Event inspired on an example from Ernie Chan's book:
# 'Algorithmic Trading: Winning Strategies and Their Rationale'
class BuyOnGap(eventprofiler.Predicate):
def __init__(self, feed):
stdDevPeriod = 90
smaPeriod = 20
self.__returns = {}
self.__stdDev = {}
self.__ma = {}
for instrument in feed.getRegisteredInstruments():
priceDS = feed[instrument].getAdjCloseDataSeries()
# Returns over the adjusted close values.
self.__returns[instrument] = roc.RateOfChange(priceDS, 1)
# StdDev over those returns.
self.__stdDev[instrument] = stats.StdDev(self.__returns[instrument], stdDevPeriod)
# MA over the adjusted close values.
self.__ma[instrument] = ma.SMA(priceDS, smaPeriod)
def __gappedDown(self, instrument, bards):
ret = False
if self.__stdDev[instrument][-1] != None:
prevBar = bards[-2]
currBar = bards[-1]
low2OpenRet = (currBar.getAdjOpen() - prevBar.getAdjLow()) / float(prevBar.getAdjLow())
if low2OpenRet < (self.__returns[instrument][-1] - self.__stdDev[instrument][-1]):
ret = True
return ret
def __aboveSMA(self, instrument, bards):
ret = False
if self.__ma[instrument][-1] != None and bards[-1].getAdjOpen() > self.__ma[instrument][-1]:
ret = True
return ret
def eventOccurred(self, instrument, bards):
ret = False
if self.__gappedDown(instrument, bards) and self.__aboveSMA(instrument, bards):
ret = True
return ret
def main(plot):
instruments = ["AA", "AES", "AIG"]
feed = yahoofinance.build_feed(instruments, 2008, 2009, ".")
predicate = BuyOnGap(feed)
eventProfiler = eventprofiler.Profiler(predicate, 5, 5)
eventProfiler.run(feed, True)
results = eventProfiler.getResults()
print "%d events found" % (results.getEventCount())
if plot:
eventprofiler.plot(results)
if __name__ == "__main__":
main(True)
我试图弄清楚如何eventprofiler
接收和使用 data,虽然有很多类方法被调用,但我发现剖析它有点棘手。
我想从简单开始,只使用price
and volume
。它是,一种策略是if volume > 1000 and close < 50: event == True
任何帮助,将不胜感激。
Ps:奖金问题:是否有类似的事件分析器zipline
?
编辑:感谢user3666197,我能够进行我想要的更改,但是我收到了这个错误:
Traceback (most recent call last):
File "C:\Users\David\Desktop\Python\Coursera\Computational Finance\Week2\PyAlgoTrade\Bitfinex\FCT\FCT_single_event_test.py", line 43, in <module>
main(True)
File "C:\Users\David\Desktop\Python\Coursera\Computational Finance\Week2\PyAlgoTrade\Bitfinex\FCT\FCT_single_event_test.py", line 35, in main
eventProfiler.run(feed, True)
File "C:\Python27\lib\site-packages\pyalgotrade\eventprofiler.py", line 215, in run
disp.run()
File "C:\Python27\lib\site-packages\pyalgotrade\dispatcher.py", line 102, in run
eof, eventsDispatched = self.__dispatch()
File "C:\Python27\lib\site-packages\pyalgotrade\dispatcher.py", line 90, in __dispatch
if self.__dispatchSubject(subject, smallestDateTime):
File "C:\Python27\lib\site-packages\pyalgotrade\dispatcher.py", line 68, in __dispatchSubject
ret = subject.dispatch() is True
File "C:\Python27\lib\site-packages\pyalgotrade\feed\__init__.py", line 105, in dispatch
self.__event.emit(dateTime, values)
File "C:\Python27\lib\site-packages\pyalgotrade\observer.py", line 59, in emit
handler(*args, **kwargs)
File "C:\Python27\lib\site-packages\pyalgotrade\eventprofiler.py", line 172, in __onBars
eventOccurred = self.__predicate.eventOccurred(instrument, self.__feed[instrument])
File "C:\Python27\lib\site-packages\pyalgotrade\eventprofiler.py", line 89, in eventOccurred
raise NotImplementedError()
NotImplementedError
[Finished in 1.9s]
我查看了源“eventprofiler.py”,但不知道它是什么。这是代码
from pyalgotrade import eventprofiler
from pyalgotrade.technical import stats
from pyalgotrade.technical import roc
from pyalgotrade.technical import ma
from pyalgotrade.barfeed import csvfeed
# Event inspired on an example from Ernie Chan's book:
# 'Algorithmic Trading: Winning Strategies and Their Rationale'
class single_event_strat( eventprofiler.Predicate ):
def __init__(self,feed):
self.__returns = {} # CLASS ATTR
for inst in feed.getRegisteredInstruments():
priceDS = feed[inst].getAdjCloseDataSeries() # STORE: priceDS ( a temporary representation )
self.__returns[inst] = roc.RateOfChange( priceDS, 1 )
# CALC: ATTR <- Returns over the adjusted close values, consumed priceDS
#( could be expressed as self.__returns[inst] = roc.RateOfChange( ( feed[inst].getAdjCloseDataSeries() ), 1 ),
#but would be less readable
def eventOccoured( self, instrument, aBarDS):
if (aBarDS[-1].getVolume() > 1000 and aBarDS[-1].getClose() > 50 ):
return True
else:
return False
def main(plot):
feed = csvfeed.GenericBarFeed(0)
feed.addBarsFromCSV('FCT', "FCT_daily_converted.csv")
predicate = single_event_strat(feed)
eventProfiler = eventprofiler.Profiler(predicate, 5, 5)
eventProfiler.run(feed, True)
results = eventProfiler.getResults()
print "%d events found" % (results.getEventCount())
if plot:
eventprofiler.plot(results)
if __name__ == "__main__":
main(True)