我在大型数组中有许多不同的形式,numpy
我想使用 和 计算它们之间的边到边欧几里得numpy
距离scipy
。
注意:我进行了搜索,这与堆栈上之前的其他问题不同,因为我想获得数组中标记的补丁之间的最小距离,而不是其他问题所问的点或单独数组之间的距离。
我目前的方法使用 KDTree,但对于大型数组来说效率非常低。本质上,我正在查找每个标记组件的坐标并计算所有其他组件之间的距离。最后以平均最小距离为例进行计算。
我正在寻找一种使用 python 的更智能的方法,最好不要使用任何额外的模块。
import numpy
from scipy import spatial
from scipy import ndimage
# Testing array
a = numpy.zeros((8,8), dtype=numpy.int)
a[2,2] = a[3,1] = a[3,2] = 1
a[2,6] = a[2,7] = a[1,6] = 1
a[5,5] = a[5,6] = a[6,5] = a[6,6] = a[7,5] = a[7,6] = 1
# label it
labeled_array,numpatches = ndimage.label(a)
# For number of patches
closest_points = []
for patch in [x+1 for x in range(numpatches)]:
# Get coordinates of first patch
x,y = numpy.where(labeled_array==patch)
coords = numpy.vstack((x,y)).T # transform into array
# Built a KDtree of the coords of the first patch
mt = spatial.cKDTree(coords)
for patch2 in [i+1 for i in range(numpatches)]:
if patch == patch2: # If patch is the same as the first, skip
continue
# Get coordinates of second patch
x2,y2 = numpy.where(labeled_array==patch2)
coords2 = numpy.vstack((x2,y2)).T
# Now loop through points
min_res = []
for pi in range(len(coords2)):
dist, indexes = mt.query(coords2[pi]) # query the distance and index
min_res.append([dist,pi])
m = numpy.vstack(min_res)
# Find minimum as closed point and get index of coordinates
closest_points.append( coords2[m[numpy.argmin(m,axis=0)[0]][1]] )
# The average euclidean distance can then be calculated like this:
spatial.distance.pdist(closest_points,metric = "euclidean").mean()
编辑 刚刚测试了@morningsun 提出的解决方案,这是一个巨大的速度改进。但是返回的值略有不同:
# Consider for instance the following array
a = numpy.zeros((8,8), dtype=numpy.int)
a[2,2] = a[2,6] = a[5,5] = 1
labeled_array, numpatches = ndimage.label(cl_array,s)
# Previous approach using KDtrees and pdist
b = kd(labeled_array,numpatches)
spatial.distance.pdist(b,metric = "euclidean").mean()
#> 3.0413115592767102
# New approach using the lower matrix and selecting only lower distances
b = numpy.tril( feature_dist(labeled_array) )
b[b == 0 ] = numpy.nan
numpy.nanmean(b)
#> 3.8016394490958878
编辑 2
啊,想通了。spatial.distance.pdist 没有返回正确的距离矩阵,因此这些值是错误的。