我想知道是否有一种方法可以根据caret
包生成的 SVM-RFE 模型的交叉验证数据绘制平均 ROC 曲线。
我的结果是:
Recursive feature selection
Outer resampling method: Cross-Validated (10 fold, repeated 5 times)
Resampling performance over subset size:
Variables ROC Sens Spec Accuracy Kappa ROCSD SensSD SpecSD AccuracySD KappaSD Selected
1 0.6911 0.0000 1.0000 0.5900 0.0000 0.2186 0.0000 0.0000 0.0303 0.0000
2 0.7600 0.3700 0.8067 0.6280 0.1807 0.1883 0.3182 0.2139 0.1464 0.3295
3 0.7267 0.4233 0.8667 0.6873 0.3012 0.2020 0.3216 0.1905 0.1516 0.3447
4 0.6989 0.3867 0.8600 0.6680 0.2551 0.2130 0.3184 0.1793 0.1458 0.3336
5 0.7000 0.3367 0.8600 0.6473 0.2006 0.2073 0.3359 0.1793 0.1588 0.3672
6 0.7167 0.3833 0.8200 0.6427 0.2105 0.1909 0.3338 0.2539 0.1682 0.3639
7 0.7122 0.3767 0.8333 0.6487 0.2169 0.1784 0.3226 0.2048 0.1642 0.3702
8 0.7144 0.4233 0.7933 0.6440 0.2218 0.2017 0.3454 0.2599 0.1766 0.3770
9 0.8356 0.6533 0.7867 0.7300 0.4363 0.1706 0.3415 0.2498 0.1997 0.4209
10 0.8811 0.6867 0.8200 0.7647 0.5065 0.1650 0.3134 0.2152 0.1949 0.4053 *
11 0.8700 0.6933 0.8133 0.7627 0.5046 0.1697 0.3183 0.2147 0.1971 0.4091
12 0.8678 0.6967 0.7733 0.7407 0.4682 0.1579 0.3153 0.2559
...
The top 5 variables (out of 10):
SumAverage_GLCM_R1SC4NG2, Variance_GLCM_R1SC4NG2, HGZE_GLSZM_R1SC4NG2, LGZE_GLSZM_R1SC4NG2, SZLGE_GLSZM_R1SC4NG2
我已经尝试过这里提到的解决方案: ROC curve from training data in caret
optSize <- svmRFE_NG2$optsize
selectedIndices <- svmRFE_NG2$pred$Variables == optSize
plot.roc(svmRFE_NG2$pred$obs[selectedIndices],
svmRFE_NG2$pred$LUNG[selectedIndices])
但是这个解决方案似乎不起作用(产生的 AUC 值完全不同)。我已经将训练过程的结果分成50个交叉验证集,如上一个答案中所述,但我不知道下一步该做什么。
resamples<-split(svmRFE_NG2$pred,svmRFE_NG2$pred$Variables)
resamplesFOLD<-split(resamples[[optSize]],resamples[[optSize]]$Resample)
有任何想法吗?