0

我想使用 matplotlib 绘制一个二维直方图,以便可视化两个变量对事件发生的影响。

在我的测试案例中,事件是“愿望成真”,变量x是流星的数量,y是仙女教母的参与。我想做的是为流星和仙女教母的垃圾箱绘制一个愿望成真的二维直方图。然后在每个轴旁边,我想显示每个流星和仙女教母箱(包含每个直方图箱的概率的一维条形图)实现愿望的概率,事件/(事件+非事件)。条形图箱应对应于二维直方图箱并与之对齐。但是,条形图和直方图箱之间似乎存在轻微的错位。

为了正确对齐条形图,对应于第一个和最后一个 bin 边缘的轴限制设置是否有效?一旦设置了这些限制,我可以将 bin 中心plt.bar()作为轴上的位置而不是索引输入吗?

我的代码和生成的图像如下:

import numpy as np
import matplotlib.pyplot as plt
from numpy import linspace
import cubehelix

# Create random events and non-events
x_noneve = 3.*np.random.randn(10000) +22.
np.random.seed(seed=41)

y_noneve = np.random.randn(10000)
np.random.seed(seed=45)

x_eve = 3.*np.random.randn(1000) +22.
np.random.seed(seed=33)

y_eve = np.random.randn(1000)

x_all = np.concatenate((x_eve,x_noneve),axis=0)
y_all = np.concatenate((y_eve,y_noneve),axis=0)

# Set up default x and y limits
xlims = [min(x_all),max(x_all)]
ylims = [min(y_all),max(y_all)]

# Set up your x and y labels
xlabel = 'Falling Star'
ylabel = 'Fairy Godmother'

# Define the locations for the axes
left, width = 0.12, 0.55
bottom, height = 0.12, 0.55
bottom_h = left_h = left+width+0.03

# Set up the geometry of the three plots
rect_wishes = [left, bottom, width, height]  # dimensions of wish plot
rect_histx  = [left, bottom_h, width, 0.25]  # dimensions of x-histogram
rect_histy  = [left_h, bottom, 0.25, height] # dimensions of y-histogram

# Set up the size of the figure
fig = plt.figure(1, figsize=(9.5,9))
fig.suptitle('Wishes coming true', fontsize=18, fontweight='bold')

cx1 = cubehelix.cmap(startHue=240,endHue=-300,minSat=1,maxSat=2.5,minLight=.3,maxLight=.8,gamma=.9)

# Make the three plots
axWishes = plt.axes(rect_wishes) # wishes plot
axStarx = plt.axes(rect_histx)   # x bar chart  
axFairy = plt.axes(rect_histy)   # y bar chart 

# Define the number of bins
nxbins = 50
nybins = 50
nbins = 100

xbins = linspace(start = xlims[0], stop = xlims[1], num = nxbins)
ybins = linspace(start = ylims[0], stop = ylims[1], num = nybins)
xcenter = (xbins[0:-1]+xbins[1:])/2.0
ycenter = (ybins[0:-1]+ybins[1:])/2.0

delx    = np.around(xbins[1]-xbins[0], decimals=2,out=None)
dely    = np.around(ybins[1]-ybins[0], decimals=2,out=None)

H, xedges,yedges = np.histogram2d(y_eve,x_eve,bins=(ybins,xbins))
X = xcenter
Y = ycenter
H = np.where(H==0,np.nan,H) # Remove 0's from plot

# Plot the 2D histogram
cax = (axWishes.imshow(H, extent=[xlims[0],xlims[1],ylims[0],ylims[1]],
       interpolation='nearest', origin='lower',aspect="auto",cmap=cx1))

#Plot the axes labels
axWishes.set_xlabel(xlabel,fontsize=14)
axWishes.set_ylabel(ylabel,fontsize=14)

#Set up the plot limits
axWishes.set_xlim(xlims)
axWishes.set_ylim(ylims)

#Set up the probability bins
x_eve_hist, xoutbins    = np.histogram(x_eve, bins=xbins) 
y_eve_hist, youtbins    = np.histogram(y_eve, bins=ybins) 

x_noneve_hist, xoutbins    = np.histogram(x_noneve, bins=xbins) 
y_noneve_hist, youtbins    = np.histogram(y_noneve, bins=ybins) 

probax = [eve/(eve+noneve+0.0) if eve+noneve>0 else 0 for eve,noneve in zip(x_eve_hist,x_noneve_hist)]
probay = [eve/(eve+noneve+0.0) if eve+noneve>0 else 0 for eve,noneve in zip(y_eve_hist,y_noneve_hist)]

probax = probax/np.sum(probax)
probay = probay/np.sum(probay)

probax = np.round(probax*100., decimals=0, out=None)
probay = np.round(probay*100., decimals=0, out=None)

#Plot the bar charts  

#Set up the limits
axStarx.set_xlim( xlims[0], xlims[1])
axFairy.set_ylim( ylims[0], ylims[1])

axStarx.bar(xcenter, probax, align='center', width =delx, color = 'royalblue')
axFairy.barh(ycenter,probay,align='center', height=dely, color = 'mediumorchid')

#Show the plot
plt.show()

结果图像

十六进制版本

4

1 回答 1

0

虽然我的原始代码可以正常工作,但二维 histo 和条形图的限制并未使用直方图箱定义。因此,对 bin 的任何更改都会导致图表对齐不佳。为了确保图形的限制总是对应于直方图箱的限制,我改变了

cax = (axWishes.imshow(H, extent=[xmin,xmax,ymin,ymax],
       interpolation='nearest', origin='lower',aspect="auto",cmap=cx1))

cax = (axWishes.imshow(H, extent=[xbins[0],xbins[-1],ybins[0],ybins[-1]],
       interpolation='nearest', origin='lower',aspect="auto",cmap=cx1))

axStarx.set_xlim( xlims[0], xlims[1])
axFairy.set_ylim( ylims[0], ylims[1])

axStarx.set_xlim(axWishes.get_xlim()) 
axFairy.set_ylim(axWishes.get_ylim())

有关信息,条形图可以接受沿轴的索引或值作为条形位置。当条形对应于 bin 而不是分类变量时,设置轴限制并正确定义条形宽度很重要。这些是使用 histo 自动完成的。但是,如果您希望按 bin 探索除成员数之外的变量,则必须使用条形图并手动定义限制。

于 2016-04-08T13:39:15.110 回答