8

谁能帮我找出前 1%(或者说前 100 个像素)最亮的像素以及它们在 opencv 中的灰度图像位置。因为 cvMinMaxLoc() 只给出最亮的像素位置。

任何帮助是极大的赞赏。

4

5 回答 5

2

这是一种简单但不完善/愚蠢的方法:

for i=1:100
  get brightest pixel using cvMinMaxLoc 
  store location
  set it to a value of zero
end

如果您不介意效率,这应该可行。

您还应该检查 cvInRangeS 以找到定义低阈值和高阈值的其他类似值的像素。

于 2010-09-06T18:28:54.957 回答
1

您需要根据直方图计算亮度阈值。然后您遍历像素以获得足够亮以满足阈值的那些位置。下面的程序将阈值应用于图像并显示结果以用于演示目的:

#!/usr/bin/env python3

import sys
import cv2
import matplotlib.pyplot as plt

if __name__ == '__main__':
    if len(sys.argv) != 2 or any(s in sys.argv for s in ['-h', '--help', '-?']):
        print('usage: {} <img>'.format(sys.argv[0]))
        exit()
    img = cv2.imread(sys.argv[1], cv2.IMREAD_GRAYSCALE)
    hi_percentage = 0.01 # we want we the hi_percentage brightest pixels
    # * histogram
    hist = cv2.calcHist([img], [0], None, [256], [0, 256]).flatten()
    # * find brightness threshold
    # here: highest thresh for including at least hi_percentage image pixels,
    #       maybe you want to modify it for lowest threshold with for including
    #       at most hi_percentage pixels
    total_count = img.shape[0] * img.shape[1]  # height * width
    target_count = hi_percentage * total_count # bright pixels we look for
    summed = 0
    for i in range(255, 0, -1):
        summed += int(hist[i])
        if target_count <= summed:
            hi_thresh = i
            break
    else:
        hi_thresh = 0
    # * apply threshold & display result for demonstration purposes:
    filtered_img = cv2.threshold(img, hi_thresh, 0, cv2.THRESH_TOZERO)[1]
    plt.subplot(121)
    plt.imshow(img, cmap='gray')
    plt.subplot(122)
    plt.imshow(filtered_img, cmap='gray')
    plt.axis('off')
    plt.tight_layout()
    plt.show()
于 2017-04-11T09:59:19.187 回答
1

基于发布的其他一些想法的 C++ 版本:

// filter the brightest n pixels from a grayscale img, return a new mat
cv::Mat filter_brightest( const cv::Mat& src, int n ) {

    CV_Assert( src.channels() == 1 );
    CV_Assert( src.type() == CV_8UC1 );

    cv::Mat result={};

    // simple histogram
    std::vector<int> histogram(256,0); 
    for(int i=0; i< int(src.rows*src.cols); ++i) 
        histogram[src.at<uchar>(i)]++;

    // find max threshold value (pixels from [0-max_threshold] will be removed)
    int max_threshold = (int)histogram.size() - 1;
    for ( ; max_threshold >= 0 && n > 0; --max_threshold ) {
        n -= histogram[max_threshold];
    }

    if ( max_threshold < 0 )  // nothing to do
        src.copyTo(result);
    else     
        cv::threshold(src, result, max_threshold, 0., cv::THRESH_TOZERO);

    return result;
}

用法示例:获得前 1%

auto top1 = filter_brightest( img, int((img.rows*img.cols) * .01) );
于 2020-01-26T00:52:30.857 回答
0

尝试改用cvThreshold

于 2010-09-06T03:54:59.553 回答
0

那么最合乎逻辑的方法是迭代整个图片,然后获取像素的maxmin值。然后选择一个阈值,它将为您提供所需的百分比(在您的情况下为 1%)。之后再次迭代并保存高于给定阈值的每个像素的ij坐标。这样,您将只迭代矩阵两次而不是 100 次(或 1% 的像素次)并选择最亮的并删除它。

OpenCV 垫子是多维数组。灰度图像是二维数组,值从 0 到 255。您可以像这样遍历矩阵。 for(int i=0;i < mat.height();i++) for(int j=0;j < mat.width();j++) mat[i][j];

于 2017-06-20T15:13:43.153 回答