4

我正在尝试使用 R 中的 Stargazer 包创建一个回归表。我有几个回归,它们仅在虚拟变量中有所不同。我希望它报告自变量、常数等的系数,并在回归中包含某些固定效应(即虚拟变量)时说“是”或“否”。这些是我的回归:

iv1 <- ivreg(data=merge1,log(total_units)~log(priceIndex)|log(taxIndex))
iv2 <- ivreg(data=merge1,log(total_units)~log(priceIndex)+factor(fips_state_code)|log(taxIndex)+factor(fips_state_code))
iv4 <- ivreg(data=merge1,log(total_units)~log(priceIndex)+factor(fips_state_code) +factor(year)|log(taxIndex)+factor(fips_state_code) +factor(year))
iv5 <- ivreg(data=merge1,log(total_units)~log(priceIndex)+factor(fips_state_code) +time*factor(fips_state_code)|log(taxIndex)+factor(fips_state_code) +time*factor(fips_state_code))

(顺便说一句,数据框代码在底部。)

如您所见,iv1 没有假人。iv2 有状态假人。iv4 有州和年份假人。iv5 有状态假人和时间趋势假人。

我不想报告所有这些假人的贝塔,我希望回归只报告是否包含每个假人。出于某种原因,我可以使用 Stargazer 使其适用于每个单独的回归,例如:

> stargazer(iv1,type="text",
+           omit = c("fips_state_code","year","time"),
+           omit.labels = c("State FE?","Year FE?","State time trend?"))

===============================================
                        Dependent variable:    
                    ---------------------------
                         log(total_units)      
-----------------------------------------------
log(priceIndex)                1.146           
                              (1.481)          

Constant                      -0.283           
                              (3.576)          

-----------------------------------------------
State FE?                       No             
Year FE?                        No             
State time trend?               No             
-----------------------------------------------
Observations                    189            
R2                            -1.347           
Adjusted R2                   -1.359           
Residual Std. Error      1.297 (df = 187)      
===============================================
Note:               *p<0.1; **p<0.05; ***p<0.01
> 
> stargazer(iv2,type="text",
+           omit = c("fips_state_code","year","time"),
+           omit.labels = c("State FE?","Year FE?","State time trend?"))

===============================================
                        Dependent variable:    
                    ---------------------------
                         log(total_units)      
-----------------------------------------------
log(priceIndex)                1.184           
                              (1.561)          

Constant                      -0.495           
                              (3.767)          

-----------------------------------------------
State FE?                       Yes            
Year FE?                        No             
State time trend?               No             
-----------------------------------------------
Observations                    189            
R2                            -1.130           
Adjusted R2                   -1.487           
Residual Std. Error      1.332 (df = 161)      
===============================================
Note:               *p<0.1; **p<0.05; ***p<0.01
> 
> stargazer(iv4,type="text",
+           omit = c("fips_state_code","year","time"),
+           omit.labels = c("State FE?","Year FE?","State time trend?"))

===============================================
                        Dependent variable:    
                    ---------------------------
                         log(total_units)      
-----------------------------------------------
log(priceIndex)                0.845           
                              (1.049)          

Constant                       0.342           
                              (2.619)          

-----------------------------------------------
State FE?                       Yes            
Year FE?                        Yes            
State time trend?               No             
-----------------------------------------------
Observations                    189            
R2                            -0.393           
Adjusted R2                   -0.690           
Residual Std. Error      1.098 (df = 155)      
===============================================
Note:               *p<0.1; **p<0.05; ***p<0.01
> 
> stargazer(iv5,type="text",
+           omit = c("fips_state_code","year","time"),
+           omit.labels = c("State FE?","Year FE?","State time trend?"))

===============================================
                        Dependent variable:    
                    ---------------------------
                         log(total_units)      
-----------------------------------------------
log(priceIndex)                0.554           
                              (1.064)          

Constant                       0.041           
                              (2.393)          

-----------------------------------------------
State FE?                       Yes            
Year FE?                        No             
State time trend?               Yes            
-----------------------------------------------
Observations                    189            
R2                            -0.001           
Adjusted R2                   -0.405           
Residual Std. Error      1.001 (df = 134)      
===============================================
Note:               *p<0.1; **p<0.05; ***p<0.01

但是,当我尝试一次进行多个回归时,事情变得很奇怪:

> stargazer(iv1,iv2,iv4,iv5,type="text",
+           omit = c("fips_state_code","year","time"),
+           omit.labels = c("State FE?","Year FE?","State time trend?"))

=======================================================================================
                                            Dependent variable:                        
                    -------------------------------------------------------------------
                                             log(total_units)                          
                          (1)              (2)              (3)              (4)       
---------------------------------------------------------------------------------------
log(priceIndex)          1.146            1.184            0.845            0.554      
                        (1.481)          (1.561)          (1.049)          (1.064)     

Constant                 -0.283           -0.495           0.342            0.041      
                        (3.576)          (3.767)          (2.619)          (2.393)     

---------------------------------------------------------------------------------------
State FE?                  No               No               No               No       
Year FE?                   No               No               No               No       
State time trend?          No               No               No               No       
---------------------------------------------------------------------------------------
Observations              189              189              189              189       
R2                       -1.347           -1.130           -0.393           -0.001     
Adjusted R2              -1.359           -1.487           -0.690           -0.405     
Residual Std. Error 1.297 (df = 187) 1.332 (df = 161) 1.098 (df = 155) 1.001 (df = 134)
=======================================================================================
Note:                                                       *p<0.1; **p<0.05; ***p<0.01

注意现在所有的假人如何被报告为“否”。似乎没有假人的 iv1 的使用让 Stargazer 望而却步。我不知道为什么会这样!

所以,我的问题是:如何让 Stargazer 的组合输出看起来像这样?

=======================================================================================
                                                Dependent variable:                        
                        -------------------------------------------------------------------
                                                 log(total_units)                          
                              (1)              (2)              (3)              (4)       
    ---------------------------------------------------------------------------------------
    log(priceIndex)          1.146            1.184            0.845            0.554      
                            (1.481)          (1.561)          (1.049)          (1.064)     

    Constant                 -0.283           -0.495           0.342            0.041      
                            (3.576)          (3.767)          (2.619)          (2.393)     

    ---------------------------------------------------------------------------------------
    State FE?                  No               Yes              Yes              Yes      
    Year FE?                   No               No               Yes              No       
    State time trend?          No               No               No               Yes      
    ---------------------------------------------------------------------------------------
    Observations              189              189              189              189       
    R2                       -1.347           -1.130           -0.393           -0.001     
    Adjusted R2              -1.359           -1.487           -0.690           -0.405     
    Residual Std. Error 1.297 (df = 187) 1.332 (df = 161) 1.098 (df = 155) 1.001 (df = 134)
    =======================================================================================
    Note:                                                       *p<0.1; **p<0.05; ***p<0.01

我知道这似乎是一个愚蠢的问题。但是我试图为更多的回归做这个,并且每次手动格式化它是一个巨大的痛苦。任何和所有的建议都会有所帮助!谢谢。

这是我的数据:

structure(list(year = c(2006L, 2006L, 2006L, 2006L, 2006L, 2006L, 
2006L, 2006L, 2006L, 2006L, 2006L, 2006L, 2006L, 2006L, 2006L, 
2006L, 2006L, 2006L, 2006L, 2006L, 2006L, 2006L, 2006L, 2006L, 
2006L, 2006L, 2006L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 
2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 
2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 
2007L, 2007L, 2007L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 
2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 
2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 2008L, 
2008L, 2008L, 2008L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 
2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 
2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 2009L, 
2009L, 2009L, 2009L, 2010L, 2010L, 2010L, 2010L, 2010L, 2010L, 
2010L, 2010L, 2010L, 2010L, 2010L, 2010L, 2010L, 2010L, 2010L, 
2010L, 2010L, 2010L, 2010L, 2010L, 2010L, 2010L, 2010L, 2010L, 
2010L, 2010L, 2010L, 2011L, 2011L, 2011L, 2011L, 2011L, 2011L, 
2011L, 2011L, 2011L, 2011L, 2011L, 2011L, 2011L, 2011L, 2011L, 
2011L, 2011L, 2011L, 2011L, 2011L, 2011L, 2011L, 2011L, 2011L, 
2011L, 2011L, 2011L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 
2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 
2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 2012L, 
2012L, 2012L, 2012L), fips_state_code = c(4, 5, 6, 8, 9, 10, 
11, 12, 13, 17, 18, 21, 22, 24, 25, 27, 29, 31, 32, 34, 35, 36, 
38, 45, 46, 48, 55, 4, 5, 6, 8, 9, 10, 11, 12, 13, 17, 18, 21, 
22, 24, 25, 27, 29, 31, 32, 34, 35, 36, 38, 45, 46, 48, 55, 4, 
5, 6, 8, 9, 10, 11, 12, 13, 17, 18, 21, 22, 24, 25, 27, 29, 31, 
32, 34, 35, 36, 38, 45, 46, 48, 55, 4, 5, 6, 8, 9, 10, 11, 12, 
13, 17, 18, 21, 22, 24, 25, 27, 29, 31, 32, 34, 35, 36, 38, 45, 
46, 48, 55, 4, 5, 6, 8, 9, 10, 11, 12, 13, 17, 18, 21, 22, 24, 
25, 27, 29, 31, 32, 34, 35, 36, 38, 45, 46, 48, 55, 4, 5, 6, 
8, 9, 10, 11, 12, 13, 17, 18, 21, 22, 24, 25, 27, 29, 31, 32, 
34, 35, 36, 38, 45, 46, 48, 55, 4, 5, 6, 8, 9, 10, 11, 12, 13, 
17, 18, 21, 22, 24, 25, 27, 29, 31, 32, 34, 35, 36, 38, 45, 46, 
48, 55), priceIndex = c(8L, 16L, 25L, 27L, 2L, 24L, 18L, 26L, 
26L, 26L, 20L, 15L, 1L, 10L, 30L, 11L, 12L, 18L, 17L, 23L, 23L, 
6L, 1L, 5L, 24L, 7L, 10L, 22L, 7L, 20L, 8L, 10L, 2L, 30L, 16L, 
27L, 21L, 14L, 21L, 13L, 16L, 11L, 11L, 7L, 22L, 21L, 30L, 2L, 
19L, 2L, 10L, 17L, 6L, 12L, 5L, 30L, 12L, 15L, 29L, 19L, 16L, 
16L, 22L, 9L, 10L, 9L, 10L, 19L, 22L, 6L, 16L, 24L, 25L, 24L, 
12L, 10L, 26L, 12L, 30L, 16L, 9L, 5L, 8L, 7L, 2L, 4L, 9L, 11L, 
16L, 10L, 13L, 23L, 1L, 10L, 9L, 10L, 2L, 17L, 6L, 15L, 5L, 18L, 
2L, 2L, 13L, 9L, 18L, 10L, 25L, 8L, 26L, 29L, 14L, 3L, 12L, 22L, 
15L, 22L, 14L, 13L, 27L, 4L, 16L, 20L, 12L, 19L, 12L, 20L, 12L, 
17L, 9L, 1L, 28L, 23L, 24L, 13L, 16L, 10L, 21L, 1L, 18L, 15L, 
1L, 15L, 23L, 5L, 16L, 27L, 8L, 7L, 5L, 20L, 3L, 3L, 7L, 3L, 
23L, 1L, 26L, 4L, 5L, 18L, 13L, 17L, 30L, 22L, 14L, 29L, 1L, 
1L, 23L, 12L, 14L, 21L, 29L, 2L, 2L, 16L, 21L, 15L, 11L, 29L, 
26L, 26L, 17L, 20L, 23L, 27L, 7L), totalWeight = c(0.964679717852504, 
0.910153114749701, 0.937533258307128, 0.908932907218257, 0.897870703904312, 
0.570664114467063, 0.793595725333603, 0.960149778439218, 0.702012263867207, 
0.959840103392019, 0.942220302688495, 0.964136166436202, 0.945368646478464, 
0.899686521142446, 0.874686707751765, 0.914447566897194, 0.952932668846809, 
0.960061052199137, 0.926259918197789, 0.885837510813906, 0.901475780845684, 
0.779591446248175, 0.604818428169235, 0.941410295398351, 0.908944873195851, 
0.940822410107144, 0.820433580971128, 0.955543163510268, 0.914685040312209, 
0.948635424851211, 0.946104114649245, 0.932230610899134, 0.558057546499175, 
0.750564479296488, 0.971764930983387, 0.68817373783927, 0.975097771312425, 
0.962368976746048, 0.970230629172812, 0.953507602894619, 0.892296298593537, 
0.930726885101312, 0.908546595974175, 0.962179609608759, 0.96839162884849, 
0.935106841280912, 0.897095564773418, 0.920053661608378, 0.820365371424697, 
0.646532974396383, 0.944743562870499, 0.911857926468439, 0.963635866793497, 
0.944584511990913, 0.973319999879543, 0.912794288563832, 0.950505538487169, 
0.947587097715066, 0.932230610899134, 0.585877063357753, 0.741854702451495, 
0.974829401211451, 0.691439730628336, 0.975813815364686, 0.960835846736876, 
0.961274083799183, 0.959334487143946, 0.89688427237274, 0.937723734431402, 
0.912751255497468, 0.971245010442592, 0.971456099076554, 0.941243932527261, 
0.898677051935661, 0.909199996904926, 0.904176820031607, 0.660962686468937, 
0.926016809434945, 0.927065572055749, 0.969462751042824, 0.887911658008384, 
0.974754164229651, 0.885875391195578, 0.958515313970186, 0.948823953012966, 
0.936466604521389, 0.613240721391053, 0.777793767761539, 0.981209274133896, 
0.706831562657967, 0.982459601639192, 0.969382100794866, 0.970450010303705, 
0.960978075054578, 0.902842393873445, 0.942890887235305, 0.905145032941613, 
0.985616404521002, 0.974335897510718, 0.94236227101429, 0.92257155375435, 
0.903566344156375, 0.905142965998554, 0.661175613077282, 0.948470597079574, 
0.937249077110803, 0.972342549476988, 0.966932959536049, 0.969719582376951, 
0.892634342170433, 0.964670562454497, 0.951929452222193, 0.93649537248916, 
0.612101928212217, 0.724332887315945, 0.980582527341166, 0.712928614791972, 
0.987189573702774, 0.974718254899991, 0.975852766090469, 0.96236303821044, 
0.899854848145425, 0.946343691677045, 0.911796075815032, 0.981805900102976, 
0.97572086066658, 0.940776475282425, 0.920956214063409, 0.918314213645145, 
0.909966039838214, 0.688692601749395, 0.939834970965504, 0.938634040266665, 
0.97372751263285, 0.96841594260187, 0.965125603615924, 0.872094653176646, 
0.974957711538891, 0.972050595493474, 0.933488903015909, 0.664724768281132, 
0.725532855017458, 0.982136493351554, 0.731583789519918, 0.986998917423862, 
0.985672785517343, 0.985359985268326, 0.96327016977471, 0.907456559706999, 
0.947841526350148, 0.924724066870382, 0.984805872685194, 0.974845207727776, 
0.956650623685199, 0.927323325078334, 0.928141500916387, 0.912472003821784, 
0.718170802590407, 0.935947208560755, 0.946217508856548, 0.975281478643238, 
0.969969908612259, 0.97439813803871, 0.849645214769615, 0.971427658757611, 
0.972050595493474, 0.927830874535962, 0.655478629719111, 0.734298949581601, 
0.984919482876493, 0.737396852851197, 0.988375665649713, 0.978252656267413, 
0.978204861100427, 0.961122141972513, 0.941660644201143, 0.953036993924037, 
0.925681643545421, 0.990001340259083, 0.969788001954067, 0.94817860131528, 
0.928318571162957, 0.927885380703944, 0.913542321320878, 0.825157348433747, 
0.948727363244703, 0.948225380163735, 0.975281478643238, 0.971354871768121
), taxIndex = c(14L, 4L, 4L, 19L, 15L, 18L, 12L, 12L, 14L, 7L, 
10L, 28L, 29L, 30L, 14L, 3L, 23L, 10L, 26L, 15L, 26L, 21L, 29L, 
4L, 22L, 23L, 16L, 5L, 4L, 25L, 7L, 6L, 10L, 16L, 25L, 6L, 13L, 
25L, 18L, 7L, 14L, 27L, 27L, 17L, 6L, 4L, 18L, 10L, 19L, 18L, 
14L, 12L, 19L, 21L, 23L, 5L, 6L, 28L, 28L, 21L, 10L, 30L, 18L, 
23L, 24L, 25L, 19L, 13L, 22L, 14L, 11L, 2L, 13L, 24L, 8L, 30L, 
12L, 13L, 4L, 3L, 1L, 21L, 7L, 8L, 30L, 3L, 7L, 14L, 10L, 23L, 
24L, 17L, 11L, 27L, 18L, 4L, 9L, 14L, 29L, 25L, 4L, 8L, 16L, 
3L, 28L, 2L, 2L, 28L, 28L, 5L, 7L, 30L, 30L, 6L, 24L, 1L, 28L, 
19L, 3L, 2L, 5L, 14L, 23L, 13L, 14L, 23L, 21L, 23L, 14L, 20L, 
21L, 25L, 27L, 30L, 5L, 15L, 27L, 3L, 4L, 15L, 1L, 12L, 9L, 17L, 
24L, 26L, 1L, 25L, 6L, 13L, 11L, 18L, 28L, 30L, 3L, 28L, 8L, 
11L, 11L, 8L, 25L, 11L, 4L, 20L, 1L, 14L, 3L, 15L, 2L, 11L, 1L, 
17L, 30L, 15L, 21L, 14L, 29L, 26L, 1L, 27L, 18L, 12L, 7L, 17L, 
4L, 30L, 23L, 1L, 27L), total_units = c(30L, 12L, 16L, 10L, 30L, 
6L, 8L, 24L, 15L, 6L, 6L, 16L, 15L, 19L, 28L, 16L, 7L, 13L, 12L, 
21L, 9L, 9L, 10L, 4L, 12L, 21L, 30L, 1L, 26L, 7L, 2L, 7L, 1L, 
2L, 15L, 14L, 11L, 28L, 29L, 2L, 22L, 26L, 9L, 21L, 8L, 26L, 
4L, 14L, 18L, 15L, 18L, 11L, 9L, 20L, 3L, 20L, 20L, 24L, 1L, 
9L, 16L, 27L, 29L, 2L, 25L, 16L, 24L, 13L, 11L, 13L, 1L, 19L, 
5L, 5L, 11L, 22L, 16L, 20L, 21L, 2L, 9L, 13L, 15L, 6L, 12L, 28L, 
7L, 24L, 22L, 24L, 21L, 14L, 1L, 6L, 10L, 10L, 26L, 26L, 3L, 
9L, 16L, 30L, 16L, 23L, 20L, 11L, 17L, 16L, 15L, 8L, 20L, 21L, 
1L, 19L, 4L, 4L, 26L, 21L, 18L, 18L, 24L, 8L, 17L, 15L, 20L, 
19L, 10L, 19L, 23L, 4L, 17L, 1L, 20L, 29L, 28L, 26L, 2L, 17L, 
22L, 17L, 17L, 14L, 17L, 13L, 1L, 3L, 15L, 5L, 30L, 27L, 20L, 
10L, 3L, 24L, 28L, 22L, 28L, 20L, 15L, 16L, 10L, 11L, 28L, 27L, 
12L, 5L, 19L, 11L, 15L, 26L, 15L, 27L, 6L, 25L, 7L, 8L, 29L, 
26L, 16L, 25L, 28L, 22L, 20L, 13L, 3L, 8L, 4L, 29L, 10L), time = c(1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 
4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 
5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7)), .Names = c("year", 
"fips_state_code", "priceIndex", "totalWeight", "taxIndex", "total_units", 
"time"), row.names = c(NA, -189L), vars = list(year), drop = TRUE, indices = list(
    0:26, 27:53, 54:80, 81:107, 108:134, 135:161, 162:188), group_sizes = c(27L, 
27L, 27L, 27L, 27L, 27L, 27L), biggest_group_size = 27L, labels = structure(list(
    year = 2006:2012), class = "data.frame", row.names = c(NA, 
-7L), vars = list(year), drop = TRUE, .Names = "year"), class = c("grouped_df", 
"tbl_df", "tbl", "data.frame"))
4

2 回答 2

5

我对其他模型类型也有类似的问题,问题是固定效果出现的顺序很重要。

如果您只是翻转模型的顺序:

stargazer(iv5,iv4,iv2,iv1,type="text",
       omit = c("fips_state_code","year","time"),
       omit.labels = c("State FE?","Year FE?","State time trend?"))

你得到正确的输出:

=======================================================================================
                                            Dependent variable:                        
                    -------------------------------------------------------------------
                                             log(total_units)                          
                          (1)              (2)              (3)              (4)       
---------------------------------------------------------------------------------------
log(priceIndex)          0.554            0.845            1.184            1.146      
                        (1.064)          (1.049)          (1.561)          (1.481)     

Constant                 0.041            0.342            -0.495           -0.283     
                        (2.393)          (2.619)          (3.767)          (3.576)     

---------------------------------------------------------------------------------------
State FE?                 Yes              Yes              Yes               No       
Year FE?                   No              Yes               No               No       
State time trend?         Yes               No               No               No       
---------------------------------------------------------------------------------------
Observations              189              189              189              189       
R2                       -0.001           -0.393           -1.130           -1.347     
Adjusted R2              -0.405           -0.690           -1.487           -1.359     
Residual Std. Error 1.001 (df = 134) 1.098 (df = 155) 1.332 (df = 161) 1.297 (df = 187)
=======================================================================================
Note:                                                       *p<0.1; **p<0.05; ***p<0.01
于 2016-04-08T04:47:29.263 回答
0

我只是不想打印出我的回归中使用的所有假人,这个问题困扰了超过 3 小时,在这里找到它令人惊讶。

我尝试了弗洛里安的建议并且有效,实际上,在我的情况下,回归中出现的固定效果的顺序并不重要,我在这里运行 plm,下面是我的 stargazer 代码:

stargazer(cluster.matched.fixed.7,cluster.matched.fixed.2,cluster.matched.fixed.3,cluster.matched.fixed.4,
          cluster.matched.fixed.5,cluster.matched.fixed.6,cluster.matched.fixed.1,title="Matched sample regression DID results",
            omit.stat = c("f"),covariate.labels=c("D","D1","D2","log(ROA)","log(totalasset)","log(sales)",
                             "log(GM)","log(Export)","log(Leverage)"),omit = c("year"),omit.labels = c("Year FE?"))

其中回归 7 没有固定效应,结果是正确的。对我来说更有趣的是你在哪里找到省略 =

c("fips_state_code","year","time"),
       omit.labels = c("State FE?","Year FE?","State time trend?")

在“stargazer”中的论点,我从 R-cran 打印了文档,但没有类似的东西。

于 2017-01-15T02:26:53.227 回答