这是一个关于 Python 2.7 和 Pandas 0.17.1 中的 scikit learn(版本 0.17.0)的问题。为了使用此处详述的方法拆分原始数据(没有丢失条目) ,我发现如果使用拆分数据继续进行 a .fit()
,则会出现错误。
这是与重命名变量的其他stackoverflow问题基本相同的代码。然后我实例化了一个网格并尝试拟合拆分数据,以确定最佳分类器参数。错误发生在下面代码的最后一行之后:
import pandas as pd
import numpy as np
# UCI's wine dataset
wine = pd.read_csv("https://s3.amazonaws.com/demo-datasets/wine.csv")
# separate target variable from dataset
y = wine['quality']
X = wine.drop(['quality','color'],axis = 1)
# Stratified Split of train and test data
from sklearn.cross_validation import StratifiedShuffleSplit
sss = StratifiedShuffleSplit(y, n_iter=3, test_size=0.2)
# Split dataset to obtain indices for train and test set
for train_index, test_index in sss:
xtrain, xtest = X.iloc[train_index], X.iloc[test_index]
ytrain, ytest = y[train_index], y[test_index]
# Pick some classifier here
from sklearn.tree import DecisionTreeClassifier
decision_tree = DecisionTreeClassifier()
from sklearn.grid_search import GridSearchCV
# Instantiate grid
grid = GridSearchCV(decision_tree, param_grid={'max_depth':np.arange(1,3)}, cv=sss, scoring='accuracy')
# this line causes the error message
grid.fit(xtrain,ytrain)
以下是上述代码产生的错误信息:
Traceback (most recent call last):
File "C:\Python27\test.py", line 23, in <module>
grid.fit(xtrain,ytrain)
File "C:\Python27\lib\site-packages\sklearn\grid_search.py", line 804, in fit
return self._fit(X, y, ParameterGrid(self.param_grid))
File "C:\Python27\lib\site-packages\sklearn\grid_search.py", line 553, in _fit
for parameters in parameter_iterable
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 800, in __call__
while self.dispatch_one_batch(iterator):
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 658, in dispatch_one_batch
self._dispatch(tasks)
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 566, in _dispatch
job = ImmediateComputeBatch(batch)
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 180, in __init__
self.results = batch()
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\parallel.py", line 72, in __call__
return [func(*args, **kwargs) for func, args, kwargs in self.items]
File "C:\Python27\lib\site-packages\sklearn\cross_validation.py", line 1524, in _fit_and_score
X_train, y_train = _safe_split(estimator, X, y, train)
File "C:\Python27\lib\site-packages\sklearn\cross_validation.py", line 1591, in _safe_split
X_subset = safe_indexing(X, indices)
File "C:\Python27\lib\site-packages\sklearn\utils\__init__.py", line 152, in safe_indexing
return X.iloc[indices]
File "C:\Python27\lib\site-packages\pandas\core\indexing.py", line 1227, in __getitem__
return self._getitem_axis(key, axis=0)
File "C:\Python27\lib\site-packages\pandas\core\indexing.py", line 1504, in _getitem_axis
self._is_valid_list_like(key, axis)
File "C:\Python27\lib\site-packages\pandas\core\indexing.py", line 1443, in _is_valid_list_like
raise IndexError("positional indexers are out-of-bounds")
IndexError: positional indexers are out-of-bounds
注意:X
保留和y
作为 Pandas数据结构
对我来说很重要,类似于上面另一个 stackoverflow 问题中提出的第二种方法。即我不想使用X.values
and y.values
。
问题:
使用原始数据作为 Pandas 数据结构(DataFrame
forX
和Series
for y
),有没有办法运行grid.fit()
而不会收到此错误消息?